Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, A= \(\frac{\sqrt{48-12\sqrt{7}}}{2}-\frac{\sqrt{48+12\sqrt{7}}}{2}\)
= \(\frac{\sqrt{\left(\sqrt{42}-\sqrt{6}\right)^2}}{2}-\frac{\sqrt{\left(\sqrt{42}+\sqrt{6}\right)^2}}{2}\)
= \(\frac{-2\sqrt{6}}{2}\)
= \(-\sqrt{6}\)
c)\(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}=\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}=A\\ \Rightarrow\sqrt{2}A=\sqrt{6+2\sqrt{5}+}\sqrt{6-\sqrt{5}}=\sqrt{\left(\sqrt{5}+1\right)^2}+\sqrt{\left(\sqrt{5}-1\right)^2}\\ =\sqrt{5}+1+\sqrt{5}-1\\ =2\sqrt{5}\\ \Rightarrow A=\sqrt{2}.\sqrt{5}=\sqrt{10}\)
a: \(A^2=12-2\sqrt{7}+12+2\sqrt{7}-2\cdot\sqrt{116}\)
\(\Leftrightarrow A^2=24-4\sqrt{29}\)
hay \(A=\sqrt{24-4\sqrt{29}}\)
c: \(C=\dfrac{\sqrt{6-2\sqrt{5}}+\sqrt{6+2\sqrt{5}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{5}-1+\sqrt{5}+1}{\sqrt{2}}=\dfrac{2\sqrt{5}}{\sqrt{2}}=\sqrt{10}\)
https://hoc24.vn/hoi-dap/question/407636.html
\(M=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-20-10\sqrt{3}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+25-5\sqrt{3}}}\)
\(=\sqrt{4+5}\)
= 9
~ ~ ~ ~ ~
\(M=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-8\sqrt{2}}}}}\)
\(=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{\left(4-\sqrt{2}\right)^2}}}}\)
\(=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+2\sqrt{3}+4-\sqrt{2}}}}\)
\(=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\left(\sqrt{3}+1\right)^2}}}\)
\(=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{3}-1}}\)
\(=\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)
\(=\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}\)
\(=\sqrt{6+2\sqrt{3}-2}\)
\(=\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(=\sqrt{3}+1\)
\(A=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{8-2\sqrt{15}}\)
\(=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)
\(=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)^2=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)
\(=2\left(4+\sqrt{15}\right)\left(4-\sqrt{15}\right)=2\left(16-15\right)=2\)
\(B=\frac{1}{\sqrt{2}}\left(\left(3-\sqrt{5}\right)\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}\left(3+\sqrt{5}\right)\right)\)
\(=\frac{1}{\sqrt{2}}\left(\left(3-\sqrt{5}\right)\sqrt{\left(\sqrt{5}+1\right)^2}+\sqrt{\left(\sqrt{5}-1\right)^2}\left(3+\sqrt{5}\right)\right)\)
\(=\frac{1}{\sqrt{2}}\left(\left(3-\sqrt{5}\right)\left(\sqrt{5}+1\right)+\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)\right)\)
\(=\frac{1}{\sqrt{2}}\left(2\sqrt{5}-2+2\sqrt{5}+2\right)=\frac{4\sqrt{5}}{\sqrt{2}}=2\sqrt{10}\)
\(C=\frac{1}{\sqrt{2}}\left(\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}-2\right)\)
\(=\frac{1}{\sqrt{2}}\left(\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{\left(\sqrt{5}-1\right)^2}-2\right)\)
\(=\frac{1}{\sqrt{2}}\left(\sqrt{5}+1-\sqrt{5}+1-2\right)=0\)
\(D=\frac{1}{\sqrt{2}}\left(\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}+\sqrt{14}\right)\)
\(=\frac{1}{\sqrt{2}}\left(\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}+\sqrt{14}\right)\)
\(=\frac{1}{\sqrt{2}}\left(\sqrt{7}-1-\sqrt{7}-1+\sqrt{14}\right)\)
\(=\frac{1}{\sqrt{2}}\left(-2+\sqrt{14}\right)=\sqrt{7}-\sqrt{2}\)
\(E=\frac{1}{\sqrt{2}}\left(\sqrt{13+2\sqrt{12}}+\sqrt{13-2\sqrt{12}}\right)+2\sqrt{6}\)
\(=\frac{1}{\sqrt{2}}\left(\sqrt{\left(\sqrt{12}+1\right)^2}+\sqrt{\left(\sqrt{12}-1\right)^2}\right)+2\sqrt{6}\)
\(=\frac{1}{\sqrt{2}}\left(\sqrt{12}+1+\sqrt{12}-1\right)+2\sqrt{6}\)
\(=\sqrt{24}+2\sqrt{6}=4\sqrt{6}\)
a) \(A=\sqrt{12-3\sqrt{7}}-\sqrt{12+3\sqrt{7}}\Rightarrow A^2=12-3\sqrt{7}+12+3\sqrt{7}-2\sqrt{\left(12-3\sqrt{7}\right)\left(12+3\sqrt{7}\right)}\Rightarrow A^2=24-2\sqrt{144-63}\Rightarrow A^2=24-18\Rightarrow A^2=6\Rightarrow A=\pm\sqrt{6}\)Ta có \(12-3\sqrt{7}< 12+3\sqrt{7}\Rightarrow\sqrt{12-3\sqrt{7}}< \sqrt{12+3\sqrt{7}}\Rightarrow\sqrt{12-3\sqrt{7}}-\sqrt{12+3\sqrt{7}}< 0\Rightarrow A< 0\)Vậy A=-6
b) \(B=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\Rightarrow B^2=4+\sqrt{10+2\sqrt{5}}+4-\sqrt{10+2\sqrt{5}}+2\sqrt{\left(4+\sqrt{10+2\sqrt{5}}\right)\left(4-\sqrt{10+2\sqrt{5}}\right)}\Rightarrow B^2=8+2\sqrt{16-10-2\sqrt{5}}\Rightarrow B^2=8+2\sqrt{5-2\sqrt{5}+1}\Rightarrow B^2=8+2\sqrt{\left(\sqrt{5}-1\right)^2}\Rightarrow B^2=8+2\sqrt{5}-2\Rightarrow B=\pm\sqrt{5+2\sqrt{5}+1}\Rightarrow B=\pm\left(\sqrt{5}+1\right)\)Ta có B>0⇒B=\(\sqrt{5}+1\)
c) \(C=\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\Rightarrow C^2=3-\sqrt{5}+3+\sqrt{5}+2\sqrt{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}\Rightarrow C^2=6+2\sqrt{9-5}\Rightarrow C^2=6+4=10\Rightarrow C=\pm\sqrt{10}\)Ta có C>0⇒C=\(\sqrt{10}\)
câu E dễ nhất nên mình làm trước , các câu còn lại làm tương tự ( biến đổi thành hằng đẳng thức rồi rút gọn ) :
\(E=\sqrt{9-2.3.\sqrt{6}+6}+\sqrt{24-2.2\sqrt{6}.3+9}\)
\(=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(2\sqrt{6}-3\right)^2}\)
\(=\left|3-\sqrt{6}\right|+\left|2\sqrt{6}-3\right|\)
\(=3-\sqrt{6}+2\sqrt{6}-3\) ( vì \(3-\sqrt{6}>0;2\sqrt{6}-3>0\) )
\(=\sqrt{6}\)
3: \(\sqrt{12-3\sqrt{7}}-\sqrt{12-3\sqrt{7}}=0\)
4: \(\sqrt{7-2\sqrt{10}}-\sqrt{7+2\sqrt{10}}\)
\(=\sqrt{5}-\sqrt{2}-\sqrt{5}-\sqrt{2}\)
\(=-2\sqrt{2}\)
6: \(3\sqrt{3}+4\sqrt{12}-5\sqrt{27}\)
\(=3\sqrt{3}+8\sqrt{3}-15\sqrt{3}\)
\(=-4\sqrt{3}\)