Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.\(\left(\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\right).\left(\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}\right)\)
\(=\left(\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}\right).\left(\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}+1\right)^2}\right)\)
\(=\left(\sqrt{3}+1-\sqrt{3}+1\right)\left(\sqrt{3}-1+\sqrt{3}+1\right)\)
\(=2.2\sqrt{3}=4\sqrt{3}\)
b.\(\left(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\right)^2=\left[\frac{\sqrt{8+2\sqrt{7}}}{\sqrt{2}}-\frac{\sqrt{8-2\sqrt{7}}}{\sqrt{2}}\right]^2\)
\(=\left(\frac{\sqrt{\left(\sqrt{7}+1\right)^2}}{\sqrt{2}}-\frac{\sqrt{\left(\sqrt{7}-1\right)^2}}{\sqrt{2}}\right)^2\)
\(=\left(\frac{\sqrt{7}+1-\sqrt{7}+1}{\sqrt{2}}\right)^2=\left(\sqrt{2}\right)^2=2\)
c.\(\sqrt{5-\sqrt{3-\sqrt{29-12\sqrt{5}}}}=\sqrt{5-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)
\(=\sqrt{5-\sqrt{3-\left(2\sqrt{5}-3\right)}}=\sqrt{5-\sqrt{6-2\sqrt{5}}}\)
\(=\sqrt{5-\sqrt{\left(\sqrt{5}-1\right)^2}}=\sqrt{5-\sqrt{5}+1}=\sqrt{6-\sqrt{5}}\)
a, A= \(\frac{\sqrt{48-12\sqrt{7}}}{2}-\frac{\sqrt{48+12\sqrt{7}}}{2}\)
= \(\frac{\sqrt{\left(\sqrt{42}-\sqrt{6}\right)^2}}{2}-\frac{\sqrt{\left(\sqrt{42}+\sqrt{6}\right)^2}}{2}\)
= \(\frac{-2\sqrt{6}}{2}\)
= \(-\sqrt{6}\)
a. \(\sqrt{15-\sqrt{216}}+\sqrt{33-12\sqrt{6}}\) \(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(2\sqrt{6}-3\right)^2}\)
= \(3-\sqrt{6} +2\sqrt{6}-3\) = \(\sqrt{6}\)
b. \(\sqrt{8\sqrt{3}}-2\sqrt{25\sqrt{12}}+4\sqrt{\sqrt{192}}\)
= \(\sqrt{8\sqrt{3}}-2.5\sqrt{12}+4\sqrt{8\sqrt{3}}\)
= \(5\sqrt{8\sqrt{3}}-5\sqrt{4.\sqrt{12}}=5\sqrt{8\sqrt{3}}-5\sqrt{4.2\sqrt{3}}\)
= \(5\sqrt{8\sqrt{3}}-5\sqrt{8\sqrt{3}}=0\)
c. \(\sqrt{2-\sqrt{3}}.\left(\sqrt{6}+\sqrt{2}\right)\) = \(\sqrt{2}.\sqrt{2-\sqrt{3}}\left(\sqrt{3}+1\right)=\sqrt{4-2\sqrt{3}}.\left(\sqrt{3}+1\right)\)
=\(\sqrt{\left(\sqrt{3}-1\right)^2}\left(\sqrt{3}+1\right)\)
= 3 - 1 = 2
d. \(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\)
= \(\dfrac{\sqrt{2}\left(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\right)}{\sqrt{2}}=\dfrac{\sqrt{6-2\sqrt{5}}+\sqrt{6+2\sqrt{5}}}{\sqrt{2}}\)
= \(\dfrac{\sqrt{\left(\sqrt{5}-1\right)^2}+\sqrt{\left(\sqrt{5}+1\right)^2}}{\sqrt{2}}\) = \(\dfrac{\sqrt{5}-1+\sqrt{5}+1}{\sqrt{2}}\)
= \(\dfrac{2\sqrt{5}}{\sqrt{2}}\)= \(\sqrt{10}\)
e. \(\left(\sqrt{2}+1\right)^3-\left(\sqrt{2}-1\right)^3=\left(\sqrt{2}+1-\sqrt{2}+1\right)\left(\left(\sqrt{2}+1\right)^2+\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)+\left(\sqrt{2}-1\right)^2\right)\)\(2.\left(3+2\sqrt{2}+2-1+3-2\sqrt{2}\right)=2.7=14\)
c)\(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}=\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}=A\\ \Rightarrow\sqrt{2}A=\sqrt{6+2\sqrt{5}+}\sqrt{6-\sqrt{5}}=\sqrt{\left(\sqrt{5}+1\right)^2}+\sqrt{\left(\sqrt{5}-1\right)^2}\\ =\sqrt{5}+1+\sqrt{5}-1\\ =2\sqrt{5}\\ \Rightarrow A=\sqrt{2}.\sqrt{5}=\sqrt{10}\)
1) \(2\sqrt{5}-\sqrt{125}-\sqrt{80}+\sqrt{605}\)
\(=2\sqrt{5}-\sqrt{5^2.5}-\sqrt{4^2.5}+\sqrt{11^2.5}\)
\(=2\sqrt{5}-5\sqrt{5}-4\sqrt{5}+11\sqrt{5}\)
\(=4\sqrt{5}\)
2) \(\sqrt{15-\sqrt{216}}+\sqrt{33-12\sqrt{6}}\)
\(=\sqrt{15-\sqrt{6^2.6}}+\sqrt{33-12\sqrt{6}}\)
\(=\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)
\(=\sqrt{\left(\sqrt{6}\right)^2-6\sqrt{6}+3^2}+\sqrt{\left(2\sqrt{6}\right)^2-12\sqrt{6}+3^2}\)
\(=\sqrt{\left(\sqrt{6}-3\right)^2}+\sqrt{\left(2\sqrt{6}-3\right)^2}\)
\(=\left|\sqrt{6}-3\right|+\left|2\sqrt{6}-3\right|\)
\(=3-\sqrt{6}+2\sqrt{6}-3\) ( vi \(\sqrt{6}-3< 0\))
\(=\sqrt{6}\)
5) \(2\sqrt{\frac{16}{3}}-3\sqrt{\frac{1}{27}}-6\sqrt{\frac{4}{75}}\)
\(=2\frac{4}{\sqrt{3}}-3.\frac{1}{3}-6\sqrt{\frac{2^2}{3.5^2}}\)
\(=\frac{8\sqrt{3}}{3}-1-6.\frac{2}{5}.\sqrt{\frac{1}{3}}\)
\(=8\frac{\sqrt{3}}{3}-1-\frac{12}{5}.\frac{\sqrt{3}}{3}\)
\(=\frac{28}{5}.\frac{\sqrt{3}}{3}-1\)
Báo cáo sai phạm
1) 2√5−√125−√80+√605
=2√5−√52.5−√42.5+√112.5
=2√5−5√5−4√5+11√5
=4√5
2) √15−√216+√33−12√6
=√15−√62.6+√33−12√6
=√15−6√6+√33−12√6
=√(√6)2−6√6+32+√(2√6)2−12√6+32
=√(√6−3)2+√(2√6−3)2
=|√6−3|+|2√6−3|
=3−√6+2√6−3 ( vi √6−3<0)
=√6
5) 2√163 −3√127 −6√475
=24√3 −3.13 −6√223.52
=8√33 −1−6.25 .√13
=8√33 −1−125 .√33
=285 .√33 −1
a: \(=\dfrac{\sqrt{20}\left(\sqrt{5}+\sqrt{2}\right)}{\sqrt{5}+\sqrt{2}}-2\left(\sqrt{5}+1\right)\)
\(=2\sqrt{5}-2\sqrt{5}-2=-2\)
c: \(=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(2+\sqrt{3}\right)^2}\)
\(=2-\sqrt{3}+2+\sqrt{3}=4\)
d: \(=\dfrac{\sqrt{6-2\sqrt{5}}\cdot\left(3+\sqrt{5}\right)}{2\sqrt{5}+2}\)
\(=\dfrac{\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)}{2\left(\sqrt{5}+1\right)}\)
\(=\dfrac{3\sqrt{5}+5-3-\sqrt{5}}{2\left(\sqrt{5}+1\right)}=\dfrac{2\sqrt{5}+2}{2\sqrt{5}+2}=1\)
a) \(\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}\)
\(=\left|\sqrt{3}+\sqrt{2}\right|-\left|\sqrt{3}-\sqrt{2}\right|=\left(\sqrt{3}+\sqrt{2}\right)-\left(\sqrt{3}-\sqrt{2}\right)\)
\(=\sqrt{3}+\sqrt{2}-\sqrt{3}+\sqrt{2}=2\sqrt{2}\)
b) \(\sqrt{7-2\sqrt{10}}-\sqrt{7+2\sqrt{10}}=\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}\)
\(=\left|\sqrt{5}-\sqrt{2}\right|-\left|\sqrt{5}+\sqrt{2}\right|=\left(\sqrt{5}-\sqrt{2}\right)-\left(\sqrt{5}+\sqrt{2}\right)\)
\(=\sqrt{5}-\sqrt{2}-\sqrt{5}-\sqrt{2}=-2\sqrt{2}\)
c) \(\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}=\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(=\left|\sqrt{3}-1\right|+\left|\sqrt{3}+1\right|=\left(\sqrt{3}-1\right)+\left(\sqrt{3}+1\right)\)
\(=\sqrt{3}-1+\sqrt{3}+1=2\sqrt{3}\)
d) \(\sqrt{24+8\sqrt{5}}+\sqrt{9-4\sqrt{5}}=2\sqrt{6+2\sqrt{5}}+\sqrt{\left(\sqrt{5}-2\right)^2}\)
\(=2\sqrt{\left(\sqrt{5}+1\right)^2}+\sqrt{5}-2=2\sqrt{5}+2+\sqrt{5}-2=3\sqrt{5}\)
a: \(A^2=12-2\sqrt{7}+12+2\sqrt{7}-2\cdot\sqrt{116}\)
\(\Leftrightarrow A^2=24-4\sqrt{29}\)
hay \(A=\sqrt{24-4\sqrt{29}}\)
c: \(C=\dfrac{\sqrt{6-2\sqrt{5}}+\sqrt{6+2\sqrt{5}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{5}-1+\sqrt{5}+1}{\sqrt{2}}=\dfrac{2\sqrt{5}}{\sqrt{2}}=\sqrt{10}\)
a) \(A=\sqrt{12-3\sqrt{7}}-\sqrt{12+3\sqrt{7}}\Rightarrow A^2=12-3\sqrt{7}+12+3\sqrt{7}-2\sqrt{\left(12-3\sqrt{7}\right)\left(12+3\sqrt{7}\right)}\Rightarrow A^2=24-2\sqrt{144-63}\Rightarrow A^2=24-18\Rightarrow A^2=6\Rightarrow A=\pm\sqrt{6}\)Ta có \(12-3\sqrt{7}< 12+3\sqrt{7}\Rightarrow\sqrt{12-3\sqrt{7}}< \sqrt{12+3\sqrt{7}}\Rightarrow\sqrt{12-3\sqrt{7}}-\sqrt{12+3\sqrt{7}}< 0\Rightarrow A< 0\)Vậy A=-6
b) \(B=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\Rightarrow B^2=4+\sqrt{10+2\sqrt{5}}+4-\sqrt{10+2\sqrt{5}}+2\sqrt{\left(4+\sqrt{10+2\sqrt{5}}\right)\left(4-\sqrt{10+2\sqrt{5}}\right)}\Rightarrow B^2=8+2\sqrt{16-10-2\sqrt{5}}\Rightarrow B^2=8+2\sqrt{5-2\sqrt{5}+1}\Rightarrow B^2=8+2\sqrt{\left(\sqrt{5}-1\right)^2}\Rightarrow B^2=8+2\sqrt{5}-2\Rightarrow B=\pm\sqrt{5+2\sqrt{5}+1}\Rightarrow B=\pm\left(\sqrt{5}+1\right)\)Ta có B>0⇒B=\(\sqrt{5}+1\)
c) \(C=\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\Rightarrow C^2=3-\sqrt{5}+3+\sqrt{5}+2\sqrt{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}\Rightarrow C^2=6+2\sqrt{9-5}\Rightarrow C^2=6+4=10\Rightarrow C=\pm\sqrt{10}\)Ta có C>0⇒C=\(\sqrt{10}\)