Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử: \(a^4\left(b-c\right)+b^4\left(c-a\right)=c^4\left(b-a\right)\)
\(\Leftrightarrow a^4\left(b-a+a-c\right)+b^4\left(c-a\right)-c^4\left(b-a\right)=0\)
\(\Leftrightarrow a^4\left(b-a\right)+a^4\left(a-c\right)+b^4\left(c-a\right)-c^4\left(b-a\right)=0\)
\(\Leftrightarrow\left(b-a\right)\left(a^4-c^4\right)+\left(a-c\right)\left(a^4-b^4\right)=0\)
\(\Leftrightarrow\left(b-a\right)\left(a-c\right)\left(a+c\right)\left(a^2+c^2\right)+\left(a-c\right)\left(a-b\right)\left(a+b\right)\left(a^2+b^2\right)=0\)
\(\Leftrightarrow\left(b-a\right)\left(c-a\right)\left\{\left(a+c\right)\left(a^2+c^2\right)-\left(a+b\right)\left(a^2+b^2\right)\right\}=0\)
\(\Leftrightarrow\left(a+c\right)\left(a^2+c^2\right)-\left(a+b\right)\left(a^2+b^2\right)=0\)( do a, b, c phân biệt).
\(\Leftrightarrow ac^2+a^2c+c^3-ab^2-a^2b-b^3=0\)
\(\Leftrightarrow a^2\left(c-b\right)+a\left(c^2-b^2\right)+\left(c^3-b^3\right)=0\)
\(\Leftrightarrow\left(c-b\right)\left(a^2+a\left(b+c\right)+b^2+bc+c^2\right)=0\)
\(\Leftrightarrow\left(c-b\right)\left(a^2+2.a\frac{b+c}{2}+\frac{b^2+2bc+c^2}{4}+\frac{3b^2+2bc+3c^2}{4}\right)=0\)
\(\Leftrightarrow\left(c-b\right)\left(\left(a+\frac{b+c}{2}\right)^2+\frac{2b^2+3bc+2c^2}{4}\right)=0\)(*).
Do \(\left(a+\frac{b+c}{2}\right)^2\ge0,\frac{2b^2+3bc+2c^2}{4}>0\).
Nên (*) không thể xảy ra. Vậy điều giả sử sai, ta có đpcm.
Đặt A = a4(b - c) + b4(c - a) + c4(a - b) = a4(b - a + a - c) + b4(c - a) + c4(a - b) = a4(b - a) + a4(a - c) + b4(c - a) + c4(a - b)
= (a - b)(c4 - a4) + (a - c)(a4 - b4) = (a - b)(c - a)(c + a)(c2 + a2) + (a - c)(a - b)(a + b)(a2 + b2)
= (a - b)(a - c)[(a + b)(a2 + b2) - (c + a)(c2 + a2)] = (a - b)(a - c)(a3 + ab2 + a2b + b3 - c3 - a2c - ac2 - a3)
= (a - b)(a - c)[a2(b - c) + a(b2 - c2) + (b3 - c3)] = (a - b)(a - c)(b - c)[a2 + a(b + c) + b2 + bc + c2]
= (a - b)(a - c)(b - c)\(\frac{a^2+2ab+b^2+a^2+2ac+c^2+b^2+2bc+c^2}{2}\)
=\(\frac{\left(a-b\right)\left(a-c\right)\left(b-c\right)\left[\left(a+b\right)^2+\left(a+c\right)^2+\left(b+c\right)^2\right]}{2}\)
Vì a,b,c là 3 số phân biệt nên A khác 0 <=> a4(b - c) + b4(c - a)\(\ne-c^4\left(a-b\right)=c^4\left(b-a\right)\)
a ) CM : \(a^4+b^4\ge a^3b+b^3a\)
Giả sử điều cần c/m là đúng
\(\Rightarrow a^4+b^4-a^3b-b^3a\ge0\)
\(\Rightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)
\(\Rightarrow\left(a^3-b^3\right)\left(a-b\right)\ge0\)
\(\Rightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)
Ta có : \(\left\{{}\begin{matrix}\left(a-b\right)^2\ge0\\a^2+ab+b^2=\left(a+\dfrac{b}{2}\right)^2+\dfrac{3b^2}{4}\ge0\end{matrix}\right.\)
\(\Rightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)
\(\Rightarrow a^4+b^4-a^3b-b^3a\ge0\)
\(\Rightarrow a^4+b^4\ge a^3b+b^3a\)
\(\Rightarrow2\left(a^4+b^4\right)\ge a^4+a^3b+b^4+b^3a\)
\(\Rightarrow2\left(a^4+b^4\right)\ge\left(a+b\right)\left(a^3+b^3\right)\)
\(\left(đpcm\right)\)
b ) \(\left(a+b+c\right)\left(a^3+b^3+c^3\right)\)
\(=a^4+a^3b+a^3c+b^3a+b^4+b^3c+c^3a+c^3b+c^4\)
\(=\left(a^4+b^4+c^4\right)+\left(a^3b+b^3a\right)+\left(b^3c+c^3b\right)+\left(a^3c+c^3a\right)\)
CMTT như a ) : \(\left\{{}\begin{matrix}a^4+b^4\ge a^3b+b^3a\\b^4+c^4\ge b^3c+c^3b\\a^4+c^4\ge a^3c+c^3a\end{matrix}\right.\)
\(\Rightarrow2\left(a^4+b^4+c^4\right)\ge a^3b+b^3a+b^3c+c^3b+a^3c+c^3a\)
\(\Rightarrow3\left(a^4+b^4+c^4\right)\ge a^4+b^4+c^4+a^3b+b^3a+b^3c+c^3b+a^3c+c^3a\)
\(\Rightarrow3\left(a^4+b^4+c^4\right)\ge\left(a+b+c\right)\left(a^3+b^3+c^3\right)\left(đpcm\right)\)
a) \(x^7+x^5+1\)
\(=x^7-x+x^5-x^2+x^2+x+1\)
\(=x\left(x^6-1\right)+x^2\left(x^3-1\right)+\left(x^2+x+1\right)\)
\(=x\left(x^3+1\right)\left(x^3-1\right)+x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=x\left(x^3+1\right)\left(x-1\right)\left(x^2+x+1\right)+x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)]
\(=\left(x^2+x+1\right)\left[x\left(x^3+1\right)\left(x-1\right)+x^2\left(x-1\right)+1\right]\)
\(=\left(x^2+x+1\right)\left[x\left(x^4-x^3+x-1\right)+x^3-x^2+1\right]\)
\(=\left(x^2+x+1\right)\left(x^5-x^4+x^2-x+x^3-x^2+1\right)\)
\(=\left(x^2+x+1\right)\left(x^5-x^4+x^3-x+1\right)\)
b) \(x^5-x^4-1\)
\(=x^5-x^4+x^3-x^3+x^2-x-x^2+x-1\)
\(=x^3\left(x^2-x+1\right)-x\left(x^2-x+1\right)-\left(x^2-x+1\right)\)
\(=\left(x^2-x+1\right)\left(x^3-x-1\right)\)