Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+7+7^2+7^3+...+7^{2016}\)
\(\Rightarrow7A=7\left(1+7+7^2+7^3+...+7^{2016}\right)\)
\(7A=7+7^2+7^3+7^4+...+7^{2017}\)
\(\Rightarrow7A-A=\left(7+7^2+7^3+...+7^{2017}\right)-\left(1+7+7^2+...+7^{2016}\right)\)
\(\Rightarrow6A=7^{2017}-1\)
\(\Rightarrow A=\dfrac{7^{2017}-1}{6}\)
a) \(6\dfrac{5}{7}-\left(1\dfrac{3}{4}+2\dfrac{5}{7}\right)\)
\(=6\dfrac{5}{7}-1\dfrac{3}{4}-2\dfrac{5}{7}\)
\(=\left(6\dfrac{5}{7}-2\dfrac{5}{7}\right)-1\dfrac{3}{4}\)
\(=4-1\dfrac{3}{4}\)
\(=3\dfrac{3}{4}\)
b) \(7\dfrac{5}{11}-\left(2\dfrac{3}{7}+3\dfrac{5}{11}\right)\)
\(=7\dfrac{5}{11}-2\dfrac{3}{7}-3\dfrac{5}{11}\)
\(=\left(7\dfrac{5}{11}-3\dfrac{5}{11}\right)-2\dfrac{3}{7}\)
\(=4-2\dfrac{3}{7}\)
\(=2\dfrac{3}{7}\)
A=1−3+5−7+...+2001−2003+2005S=1−3+5−7+...+2001−2003+2005
=(1−3)+(5−7)+...+(2001−2003)+2005=(1−3)+(5−7)+...+(2001−2003)+2005(Có 1002 cặp)
=(−2).1002+2005=(−2).1002+2005
=−2004+2005=−2004+2005
=1
Bài 1:
a) Ta có: \(6\frac{5}{7}-\left(1\frac{3}{4}+2\frac{5}{7}\right)\)
\(=6\frac{5}{7}-1\frac{3}{4}-2\frac{5}{7}\)
\(=4\frac{5}{7}-1\frac{3}{4}\)
\(=\frac{33}{7}-\frac{7}{4}\)
\(=\frac{132}{28}-\frac{49}{28}=\frac{83}{28}\)
b) Ta có: \(7\frac{5}{9}-\left(2\frac{3}{4}+3\frac{5}{9}\right)\)
\(=7\frac{5}{9}-2\frac{3}{4}-3\frac{5}{9}\)
\(=4\frac{5}{9}-2\frac{3}{4}\)
\(=\frac{41}{9}-\frac{11}{4}\)
\(=\frac{164}{36}-\frac{99}{36}=\frac{65}{36}\)
c) Ta có: \(\frac{-3}{5}\cdot\frac{5}{7}+\frac{-3}{5}\cdot\frac{3}{7}+\frac{-3}{5}\cdot\frac{6}{7}\)
\(=\frac{-3}{5}\cdot\left(\frac{5}{7}+\frac{3}{7}+\frac{6}{7}\right)\)
\(=\frac{-3}{5}\cdot2=-\frac{6}{5}\)
d) Ta có: \(\frac{1}{3}\cdot\frac{4}{5}+\frac{1}{3}\cdot\frac{6}{5}-\frac{4}{3}\)
\(=\frac{1}{3}\cdot\frac{4}{5}+\frac{1}{3}\cdot\frac{6}{5}-\frac{1}{3}\cdot4\)
\(=\frac{1}{3}\left(\frac{4}{5}+\frac{6}{5}-4\right)\)
\(=\frac{1}{3}\cdot\left(-2\right)=\frac{-2}{3}\)
a, 52015+52014+52013 chia hết cho 31
52015+52014+52013
=52013.(52+5+1)
=52013.31
Vì 31 chia hết cho 31
=> 52013.31 chia hết cho 31
Hay 52015+52014+52013 chia hết cho 31.
b, 439+440+441 chia hết cho 28
439+440+441
=438.(4+42+43)
=438.84
Vì 84 chia hết cho 28
=> 438.84 chia hết cho 28
Hay 439+440+441 chia hết cho 28.
c, 1+7+72+.....+7101 chia hết cho 8
1+7+72+.....+7101
=(1+7)+72.(1+7)+....+7100.(1+7)
=8+72.8+....+7100.8
=8(1+72+....+7100)
Vì 8 chia hết cho 8
=> 8(1+72+....+7100) chia hết cho 8
Hay 1+7+72+.....+7101 chia hết cho 8.
cách này mình tự nghĩ
\(\hept{\begin{cases}A=\frac{4}{7}+5+\frac{3}{7^2}+\frac{5}{7^3}+\frac{6}{7^4}\\B=\frac{5}{7^4}+5+\frac{6}{7^2}+\frac{4}{7}+\frac{5}{7^3}\end{cases}}\)
\(\Rightarrow A-B=\left(\frac{4}{7}-\frac{4}{7}\right)+\left(\frac{5}{7^3}-\frac{5}{7^3}\right)+\left(5-5\right)+\left(\frac{3}{7^2}-\frac{6}{7^2}\right)+\left(\frac{6}{7^4}-\frac{5}{7^4}\right)\)
\(\Rightarrow A-B=-\frac{3}{7^2}+\frac{1}{7^4}\)
\(\Rightarrow A-B=\frac{-3\times7^2}{7^4}+\frac{1}{7^4}\)
mà \(-3\times7^2< 1\Rightarrow\frac{1}{7^4}>\frac{-3\times7^2}{7^4}\Rightarrow B>A\)
\(A=5+5^2+5^3+5^4+...+5^{2004}\)
\(5A=5^2+5^3+5^4+5^5+...+5^{2005}\)
\(5A-A=\left(5^2+5^3+5^4+5^5+...+5^{2005}\right)-\left(5+5^2+5^3+5^4+...+5^{2004}\right)\)
\(4A=5^{2005}-5\)
\(A=\dfrac{5^{2005}-5}{4}\)
\(B=7^1+7^2+7^3+....+7^{2015}\)
\(7B=7^2+7^3+7^4+....+7^{2016}\)
\(7B-B=\left(7^2+7^3+7^4+...+7^{2016}\right)-\left(7+7^2+7^3+....+7^{2015}\right)\)
\(6B=7^{2016}-7\)
\(B=\dfrac{7^{2016}-7}{6}\)
\(C=4^5+4^6+4^7+...+4^{2016}\)
\(4C=4^6+4^7+4^8+...+4^{2017}\)
\(4C-C=\left(4^6+4^7+4^8+...+4^{2017}\right)-\left(4^5+4^6+4^7+...+4^{2016}\right)\)
\(3C=4^{2017}-4^5\)
\(C=\dfrac{4^{2017}-4^5}{3}\)
A = 5 + 52 + 53 + 54 + ... + 52004
5A = 52 + 53 + 54 + 55 + ... + 52005
5A - A = 52005 - 5
4A = 52005 - 5
A = (52005 - 5) : 4
B = 71 + 72 + 73 + ... + 72015
7B = 72 + 73 + 74 + ... + 72016
7B - B = 72016 - 7
6B = 72016 - 7
B = (72016 - 7) : 6
C = 45 + 46 + 47 + ... + 42016
4C = 46 + 47 + 48 + ... + 42017
4C - C = 42017 - 45
3C = 42017 - 45
C = (42017 - 45) : 3