Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(2+2^2+2^3+...+2^{2010}+2^{2011}\)
A.2=\(2\left(2+2^2+2^3+...+2^{2010}+2^{2011}\right)\)
A.2=\(2^2+2^3+2^4+...+2^{2011}+2^{2012}\)
A.2-A=\(\left(2^2+2^3+2^4+...+2^{2011}+2^{2012}\right)-\left(2+2^2+2^3+...+2^{2010}+2^{2011}\right)\)A=\(2^{2012}-2\)
Ta thấy: 2012=4.503
\(\Rightarrow2^{2012}\)có tận cùng là 6
\(\Rightarrow2^{2012}-2\) hay A có tận cùng là 4.
Ta có 1!=1
2!=2
3!=6
4!=24
Nhưng 5!=...0(vì trong đó có tích của 5x2 nên co c/s tận cùng là 0) nên từ 5!,6!,7!,..n! đều có tận cùng là 0
=>A=1+2+6+24+..0+..0+..0+....+...0
A=...3
Vậy chữ số tận cùng của A là 3
B = 2+22+23+....+259+260
B = (2+22+23+24) +....+ (257+258+559+560)
B = 2(1+2+22+23)+...+ 257(1+2+22+23)
B = 2x15 +....+ 257x15
B = 15( 2+....+257) =>chia hết cho 5 vì 15 chia hết cho 5
a) B=2+22 + 23 + ...+ 259 + 260
B= (2+22) + (23+24) + .... + ( 259+ 260)
B= 2(1+2) + 23(1+2) + ... +259(1+2)
B= 2x3 + 23x3 + ... + 259x3
B= 3(2+23+......+259) => chia hết cho 3
a)Ta có: S=(1+3^2+3^4)+(3^6+3^8+3^10)+....+(3^2004+3^2006+3^2008)
S=91+3^6.(1+3^2+3^4)+....+3^2004.(1+3^2+3^4)=91.(1+3^6+...+3^2004) . Vì vậy S chia hết cho 91 và dư 0
b)Ta có:S=1+(3^2+3^4)+(3^6+3^8)+....+(3^2006+3^2008)=1+3^2.(1+3^2)+3^6.(1+3^2)+...+3^2006.(1+3^2)
S=1+3^2.10+3^6.10+....+3^2006.10=1+10.(3^2+3^6+...+3^2006). Vì vậy S có tận cùng là chữ số 1
Đúng rồi bạn nhé!
Đặt \(S=1+3+3^2+3^3+...+3^{48}+3^{49}\)
nên \(3S=3+3^2+3^3+3^4+...+3^{49}+3^{50}\)
\(\Rightarrow3S-S=2S=3^{50}-1\Rightarrow S=\frac{3^{50}-1}{2}=\frac{9^{25}-1}{2}\)
Nhận xét: 9 lũy thừa chỉ có 2 số tận cùng là 1 và 9 với lũy thừa chẵn là 1 và lẻ là 9
Vậy, \(9^{25}\)là lũy thừa lẽ nên có chữ số tận cùng là 9
Ta có: \(\frac{9-1}{2}=4\)nên chữ số tận cùng của \(S=1+3+3^2+3^3+...+3^{48}+3^{49}\)là \(4\)
Gọi A =1+3+32+....+349(1)
=>3A=3+32+....+350(2)
=>2A=350-1 [Lấy (2)-(1)]
=>2A=34.16.3.3-1
=>2A=(...1).9-1
=>A=(...8):2
=>A=...4
vậy cs tận cùng của A là 4
\(3+3^2+3^3+......+3^{2000}\)
\(\Rightarrow3A=3^2+3^3+3^4+....+3^{2001}\)
\(\Rightarrow3A-A=\left(3^2+3^3+3^4+....+3^{2001}\right)-\left(3+3^2+3^3+3^4+.....+3^{2000}\right)\)
\(\Rightarrow2A=2^{2001}-3\)
\(\Rightarrow A=\frac{2^{2001}-3}{2}\)
Vậy chữa số tận cùng của A là : 0
3A = 32 + 33 + ...................+ 32001
3A - A = 32001 - 3
2A = 32000 .3 - 3
2A = ....1 .3 - 3
2A = .....3 - 3
A = ........0 : 2
2A= .......0