\(^{2+2^2+2^3+...+2^{59}+2^{60}}\)

a, chung to rang B chia het cho 3,5...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2017

B = 2+22+23+....+259+260

B = (2+22+23+24) +....+ (257+258+559+560)

B = 2(1+2+22+23)+...+ 257(1+2+22+23)

B = 2x15 +....+ 257x15

B = 15( 2+....+257) =>chia hết cho 5 vì 15 chia hết cho 5

26 tháng 10 2017

a) B=2+22 + 23 + ...+ 259 + 260

B= (2+22) + (23+24) + .... + ( 259+ 260)

B= 2(1+2) + 23(1+2) + ... +259(1+2)

B= 2x3 + 23x3 + ... + 259x3

B= 3(2+23+......+259) => chia hết cho 3

21 tháng 11 2018

Bài 1 

1+2-3-4+5+6-7-8+9+10-....+2006-2007-2008+2009

=1+(2-3-4+5)+(6-7-8+9)+...+(2006-2007-2008+2009)

=1+0+0+....+0

=1

21 tháng 11 2018

Bài 2

Ta có: S=3^1+3^2+...+3^2015

3S=3^2+3^3+...+3^2016

=> 3S-S=(3^2+3^3+...+3^2016)-(3^1+3^2+...+3^2015)

2S=3^2016-3^1

S=\(\frac{3^{2016}-3}{2}\)

Ta có \(3^{2016}=3^{4K}=\left(3^4\right)^K=\left(81\right)^K=.....1\)

=> \(S=\frac{3^{2016}-3}{2}=\frac{....1-3}{2}=\frac{....8}{2}\)

=> S có 2 tận cùng 4 hoặc 9

mà S có số hạng lẻ => S có tận cùng là 9

Ta có : 2S=3^2016-3(=)2S+3=3^2016 => X=2016

15 tháng 11 2019

câu a là 1 hàng đẳng thức bạn nhé

Vế trái = (a-b)(a+b)=a^2+ab-ab-b^2=a^2-b^2

b) p^2-1=(p-1)(p+1)

Do p>3 và p là SNT => p ko chia hết cho 3 => p chia 3 dư 1 hoặc 2

+ Nếu p:3 dư 1 thì p-1 chia hết cho 3

+ Nếu p:3 dư 2 thì p+1 chia hết cho 3

=> p^2-1 chia hết cho 3.

Do p>3, p NT=> p lẻ=> p=2k+1

Thay vào đc p^2-1=2k(2k+2)

=4k(k+1)

Do k và k+1 là 2 số tự nhiên liên tiếp => chia hết cho 2

=> 4k(k+1) chia hết cho 8=> p^2-1 chia hết cho 8

Tóm lại p^2-1 chia hết cho 24 do (3,8)=1

2) p^4-1=(p^2-1)(p^2+1)

Theo câu a thì p^2-1 chia hết cho 24

Do p lẻ (p là SNT >3)

=> p^2 cx lẻ => p^2+1 chẵn do 1 lẻ

=> p^2+1 chia hết cho 2

=> p^4-1 chia hết cho 48 (đpcm).