Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có: 7a5b1 \(⋮\)3 => 7 + a + 5 + b + 1 \(⋮\)3
=> 13 + a + b \(⋮\)3
=> a + b chia 3 dư 2 (1)
Mà a - b = 4 nên 4 \(\le\) a \(\le\) 9
0 \(\le\) b \(\le\) 5
Suy ra 4 \(\le\)a + b \(\le\)14 (2)
Mặt khác a - b chẵn nên a + b chẵn (3)
Từ (1);(2) và (3) suy ra a + b \(\in\){8;14}
+) Với a + b = 8 ; a - b = 4 => a = 6, b = 2
+) Với a + b = 14 ; a - b = 4 => a = 9, b = 5
Vậy...
b, Giả sử 10a + b \(⋮\)17
=> 2(10a + b) \(⋮\)17
=> 2(10a + b) - (3a + 2b) \(⋮\)17
=> 20a + 2b - 3a - 2b \(⋮\)17
=> 17a \(⋮\)17 (đúng)
=> Giả sử đúng
Vậy 10a + b \(⋮\)17
Số 7a5b1 đang có tổng là 13
Vì thế:
Dự đoán:
nếu 5 -1 = 4 mà bên kia lại là 19 thì sai
nếu 6 - 2 = 4 thì bên kia lại là 21 là đúng
Vì thế a = 6 và b = 4
Có sai đề ko
Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
Ta có: (3a+2b)-2(10a+b) = -17a chia hết cho 17
the bài ra: 3a+2b chia hết cho17 =>2(10a+b) chia hết cho 17
mà 2 không chia hết cho 17 =>10a+b chia hết cho17 => điều phải chứng minh
\(Tc:\)\(3a+2b\)\(⋮\text{ }17\)
\(\Rightarrow4\left(3a+2b\right)⋮17\)
\(\Rightarrow12a+8b⋮17\)
\(\Rightarrow\left(10a+b\right)+\left(2a+7b\right)⋮17\)
\(\Rightarrow10a+b⋮17\)
\(\text{#Not_chắv_:)}\)
a. Ta có :
2(10a + b) - (3a+2b)
= 20a+2b-3a-2b
= 17a
Vì 17 \(\vdots\) 17 => 17a \(\vdots\) 17
=> 2( 10a+b) - (3a+2b) \(\vdots\) 17
Vì 3a+2b \(\vdots\) 17 => 2( 10a+b) \(\vdots\) 17
Mà (2,17)=1 => 10a+b \(\vdots\) 17
Vậy nếu 3a+2b \(\vdots\) 17 thì 10a+b \(\vdots\) 17
b. Câu b cx tương tự nha
Đặt: 3a+2b=x và 10a+b=y
Xét hệ thức:
x-2y =3a+2b-2.(10a+b)
=3a+2b-20a-2b
=(3a-20a)+(2b-2b)
=a.(3-20)+0
=a.(-17) chia hết cho 17 (1)
Mà 3a+2b chia hết cho 13
=> 3a chia hết cho 17 (2)
Từ (1) và (2) => 10a+b chia hết cho 17 (đpcm)
A=(2+2²+2³+2⁴)+(25+26+27+28)...+(217+218+219+220)
=2(1+2+4+8)+25(1+2+4+8)+...+217(1+2+4+8)
=15(2+25+29+...+217)
=30.(1+2⁴+28+...+216) chia hết cho 10
=> A có tận cùng là 0
b) Có a-5b chia hết cho 17
=> 10(a-5b) chia hết cho 17.
=> 10a-50b chia hết cho 17.
Mà 51b= 17×3b chia hết cho 17
=> 10a-50b+51b chia hết cho 17
=> 10a+b chia hết cho 17
Bài 1 :
1. a, 5\(^{2x-3}\)-2.5\(^2\)=5\(^2\).3
5\(^{2x}\) : 5\(^3\) -2.25 = 25.3
5\(^{2x}\): 5\(^3\) - 50 = 75
5\(^{2x}\): 5\(^3\) = 75+50
5\(^{2x}\): 5\(^3\) = 125
5\(^{2x}\) = 125.5\(^3\)
5\(^{2x}\) = 5\(^3\). 5\(^3\)
5 \(^{2x}\) = 5\(^{3+3}\)
5 \(^{2x}\) = 5\(^6\)
Có 5=5 => 2x = 6
x = 6 : 2
x = 3
Vậy x = 3.
b. / 2x -1 / = 5
=> 2x-1 = 5 hoặc 2x-1 = -5
* Với 2x - 1 = 5
thì 2x = 5+1
2x = 6
x = 6:2
x = 3
* Với 2x - 1 = - 5
thì 2x = -5 + 1
2x = -4
x = -4 : 2
x = -2
\(a,3a+2b⋮17\\ =>17a+3a+2b⋮17\\ =>20a+2b⋮17\\ =>2\left(10a+b\right)⋮17\\ =>10a+b⋮17\)
\(b,xy+x-y=4\\ x\left(y+1\right)-y=4\\ x\left(y+1\right)-y-1=4-1\\ x\left(y+1\right)-\left(y+1\right)=3\\ \left(x-1\right)\left(y+1\right)=3\\ Ư\left(3\right)=\left\{1;-1;3;-3\right\}\\ Th1:x-1=1=>x=2;y+1=3=>y=2\\ Th2:x-1=3=>x=4;y+1=1=>y=0\\ Th3:x-1=-1=>x=0;y+1=-3=>y=-4\\ Th4:x-1=-3=>x=-2;y+1=-1=>y=2\)