K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2020

\(Tc:\)\(3a+2b\)\(⋮\text{ }17\)

  \(\Rightarrow4\left(3a+2b\right)⋮17\)

\(\Rightarrow12a+8b⋮17\)

\(\Rightarrow\left(10a+b\right)+\left(2a+7b\right)⋮17\)

\(\Rightarrow10a+b⋮17\)

\(\text{#Not_chắv_:)}\)

5 tháng 2 2020

a. Ta có :

    2(10a + b) - (3a+2b)

= 20a+2b-3a-2b

= 17a

Vì 17 \(\vdots\) 17 => 17a \(\vdots\) 17

                => 2( 10a+b) - (3a+2b) \(\vdots\) 17

Vì 3a+2b \(\vdots\) 17 => 2( 10a+b) \(\vdots\) 17

 Mà (2,17)=1 => 10a+b \(\vdots\) 17

Vậy nếu 3a+2b \(\vdots\) 17 thì 10a+b \(\vdots\) 17

b. Câu b cx tương tự nha

19 tháng 12 2015

Có sai đề ko 

Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath

19 tháng 12 2015

TÍCH CHO TAU KO TAU GOI CHolm TRỪ ĐIỂM MI

15 tháng 12 2021

Thôi làm đc rồi bye 

5 tháng 1 2016

51a:17

=> 51a-a+5b:17

=> 50a+5b:17

=> 5(10a+b):17

=> 10a+b:17

6 tháng 11 2017

Câu trả lời hay nhất:  + ta chứng minh a,b,c có ít nhất một số chia hết cho 3 
giả sử cả 3 số trên đều không chia hết cho 3 
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1) 
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn 
Vậy có ít nhất 1 số chia hết cho 3 
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4 
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn 
vậy có ít nhất 1 số cgia hết cho 4 
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5) 
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3 
=> phải có ít nhất 1 số chia hết cho 5 
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60

29 tháng 1 2017

a, Giả sử 10a + b \(⋮\) 17         (1)

Vì 3a + 2b \(⋮\) 17 nên 8(3a + 2b) \(⋮\) 17

=> 24a + 16b \(⋮\) 17                             (2)

Từ (1) và (2) suy ra (10a + b) + (24a + 16b) \(⋮\) 17

=> 10a + b + 24a + 16b \(⋮\) 17

=> (10a + 24a) + (16b + b) \(⋮\) 17

=> 34a + 17b \(⋮\) 17

=> 17(2a + b) \(⋮\) 17

=> Giả sử đúng

Vậy 10a + b \(⋮\)17 (đpcm)

b, Giả sử 10a + b \(⋮\) 17        (1)

Vì a - 5b \(⋮\) 17 nên 7(a - 5b) \(⋮\) 17

=> 7a - 35b \(⋮\) 17                  (2)

Từ (1) và (2) suy ra (10a + b) + (7a - 35b) \(⋮\) 17

=> 10a + b + 7a - 35b \(⋮\) 17

=> (10a + 7a) + (b - 35b) \(⋮\) 17

=> 17a + (-34b) \(⋮\) 17

=> 17.[a + (-2)b] \(⋮\) 17

=> Giả sử đúng

Vậy 10a + b \(⋮\) 17 (đpcm)

22 tháng 11 2021
23456789:123
7 tháng 11 2015

Ta có: (3a+2b)-2(10a+b) = -17a chia hết cho 17

the bài ra: 3a+2b chia hết cho17 =>2(10a+b) chia hết cho 17

mà 2 không chia hết cho 17 =>10a+b chia hết cho17 => điều phải chứng minh 

 

5 tháng 1 2016

3a + 2b chia hết cho 17

3a + 2b  +17a chia hết cho 17

20a + 2b chia hết cho 17

2(10a  + b) chia hết cho 17

UCLN(2 , 17) = 1

10a + b chia hết cho 17

=> ĐPCM 

23 tháng 12 2014

taco;17achia het cho17

suy ra 17a+3a+2b chia het cho17

suy ra20a+2bchia het cho17

rút gọn cho 2

suyra 10a+b chia hết cho 17

23 tháng 12 2014

Lập luận như bạn ko đúng rồi.

6 chia hết cho 6, vậy 3 có chia hết cho 6 ko bạn?

Bạn phải dựa vào t/c sau : nếu a.m chia hết cho b, mà (b  ;m) = 1 thì a chia hết cho b

AH
Akai Haruma
Giáo viên
11 tháng 11 2023

Lời giải:
$3a+2b\vdots 17$
$\Rightarrow 3a+2b+17a\vdots 17$

$\Rightarrow 20a+2b\vdots 17$

$\Rightarrow 2(10a+b)\vdots 17$

$\Rightarrow 10a+b\vdots 17$ (do $(2,17)=1$)

Ta có đpcm.

15 tháng 4 2016

Đặt: 3a+2b=x và 10a+b=y

Xét hệ thức:

 x-2y =3a+2b-2.(10a+b)

         =3a+2b-20a-2b

         =(3a-20a)+(2b-2b)

         =a.(3-20)+0

         =a.(-17) chia hết cho 17 (1)

Mà 3a+2b chia hết cho 13

=> 3a chia hết cho 17 (2)

Từ (1) và (2) => 10a+b chia hết cho 17 (đpcm)