K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2016

a)C=1023            S=216                  Vậy C>S

b)P=5^450

c)S=2^425

2 tháng 9 2017

\(S=1+2+2^2+2^3+...+2^9\)

\(2S=2+2^2+2^3+2^4+...+2^{10}\)

\(2S-S=\left(2+2^2+2^3+...+2^{10}\right)-\left(1+2+2^2+...+2^9\right)\)

\(2S-S=2+2^2+2^3+...+2^{10}-1-2-2^2-...-2^9\)

\(S=2^{10}-1\)

\(P=4.\frac{5}{4}.2^8\)

\(P=2^2.2^8.\frac{5}{4}=2^{10}.\frac{5}{4}\)

\(\Rightarrow S< P\)

22 tháng 10 2017

S < P nhe

Đảm bảo 100% là đúng

A=13+57+...+20012003+2005S=1−3+5−7+...+2001−2003+2005

=(13)+(57)+...+(20012003)+2005=(1−3)+(5−7)+...+(2001−2003)+2005(Có 1002 cặp)

=(2).1002+2005=(−2).1002+2005

=2004+2005=−2004+2005

=1

2 tháng 5 2017

2/

S = 2 + 22 + 23 +...+ 299

= (2+22+23) +...+ (297+298+299)

= 2(1+2+22)+...+297(1+2+22)

= 2.7 +...+ 297.7

= 7(2+...+297) chia hết cho 7

S = 2+22+23+...+299

= (2+22+23+24+25)+...+(295+296+297+298+299)

= 2(1+2+22+23+24)+...+295(1+2+22+23+24)

= 2.31+...+295.31

= 31(2+...+295) chia hết cho 31

3/

A = 1+5+52+....+5100 (1)

5A = 5+52+53+...+5101 (2)

Lấy (2) - (1) ta được

4A = 5101 - 1

A = \(\frac{5^{101}-1}{4}\)

2 tháng 5 2017

4/

Đặt A là tên của biểu thức trên

Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}=\frac{1}{1}-\frac{1}{2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)

........

\(\frac{1}{8^2}< \frac{1}{7.8}=\frac{1}{7}-\frac{1}{8}\)

\(\Rightarrow A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{8}=\frac{1}{1}-\frac{1}{8}=\frac{7}{8}< 1\)

Vậy...

5/

a, Gọi UCLN(n+1,2n+3) = d

Ta có : n+1 chia hết cho d => 2(n+1) chia hết cho d => 2n+2 chia hết cho d

           2n+3 chia hết cho d

=> 2n+2 - (2n+3) chia hết cho d

=> -1 chia hết cho d => d = {-1;1}

Vậy...

b, Gọi UCLN(2n+3,4n+8) = d

Ta có: 2n+3 chia hết cho d => 2(2n+3) chia hết cho d => 4n+6 chia hết cho d

          4n+8 chia hết cho d 

=> 4n+6 - (4n+8) chia hết cho d

=> -2 chia hết cho d => d = {1;-1;2;-2}

Mà 2n+3 lẻ => d lẻ => d khác 2;-2 => d = {1;-1}

Vậy...

5 tháng 7 2019

#)Giải :

a)\(\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{24.25}\)

\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{24}-\frac{1}{25}\)

\(=\frac{1}{5}-\frac{1}{25}\)

\(=\frac{4}{25}\)

b)\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)

\(=1-\frac{1}{101}\)

\(=\frac{100}{101}\)

5 tháng 7 2019

a) \(\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{24.25}\)

\(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{24}-\frac{1}{25}\)

\(\frac{1}{5}-\frac{1}{25}\)

\(\frac{4}{25}\)

b) \(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\)

\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)

\(1-\frac{1}{101}\)

\(\frac{100}{101}\)

c) \(5\frac{2}{7}.\frac{8}{11}+5\frac{2}{7}.\frac{5}{11}-5\frac{2}{7}.\frac{2}{11}\)

\(5\frac{2}{7}.\left(\frac{8}{11}+\frac{5}{11}-\frac{2}{11}\right)\)

\(5\frac{2}{7}\)

\(\frac{37}{7}\)

19 tháng 5 2017

a)

\(A=1+5+5^2+5^3+................+5^{99}\)

\(\Rightarrow5A=5+5^2+5^3+................+5^{99}+5^{100}\)

\(\Rightarrow5A-A=\left(5+5^2+5^3+.........+5^{99}+5^{100}\right)-\left(1+5+5^2+.......+5^{99}\right)\)

\(\Rightarrow4A=5^{100}-1\)

\(\Rightarrow A=\dfrac{5^{100}-1}{4}\)

Ta có :

\(A=\dfrac{5^{100}-1}{4}< B=\dfrac{5^{100}}{4}\Rightarrow A< B\)

b) Chưa có nghĩ ra!!

19 tháng 5 2017

a, \(A=1+5+5^2+...+5^{100}\\ =>5A=5+5^2+5^3+...........+5^{101}\\ =>5A-A=\left(5+5^2+5^3+......+5^{101}\right)-\left(1+5+5^2+...5^{100}\right)\\ 4A=5^{101}-1\\ =>A=\dfrac{5^{101}-1}{4}->\left(1\right)\)

Theo đề: \(B=\dfrac{5^{101}}{4}->\left(2\right)\)

Từ (1) và (2), ta thấy: \(\dfrac{5^{101}-1}{4}< \dfrac{5^{101}}{4}\\ =>A< B\)

28 tháng 9 2016

a) \(A=1.2+2.3+3.4+...+29.30\)

\(\Rightarrow3A=1.2.3+2.3.\left(4-1\right)+3.4\left(5-2\right)+...+29.30\left(31-28\right)\)

\(\Rightarrow3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+29.30.31-28.29.30\)

\(\Rightarrow3A=29.30.31\)

\(\Rightarrow A=29.30.31:3\)

\(\Rightarrow A=29.10.31\)

\(\Rightarrow A=8990\)

 

28 tháng 9 2016

3A= 1.2.3+2.3.4+3.4.3 +......+ 29.30.3

3A= 1.2. ﴾3 ‐ 0﴿ + 2.3.﴾4 ‐ 1﴿ +3.4. ﴾5 ‐ 2﴿....... . 29.30. ﴾31 ‐ 28﴿

3A = ﴾1.2.3 + 2.3.4 + 3.4.5 +...... +18.20.21﴿ ‐ ﴾0.1.2 + 1.2.3 + 2.3.4 +.......+ 18.19.20﴿

3A = 29.30.31 ‐ 0.1.2

3A =26970‐0

3A= 26970

 A=26970:3

A = 8990.

Vậy A=8990

2 tháng 1 2018

\(A=\frac{1+5+5^2+...+5^9}{1+5+5^2+...+5^8}=\frac{1+5\left(1 +5+5^2+...+5^8\right)}{1+5+5^2+...+5^8}=5+\frac{1}{1+5+5^2+...+5^8} \)

\(B=\frac{1+3+3^2+....+3^9}{1+3+3^2+....+3^8}=\frac{1+3\left(1+3+3^2+....+3^8\right)}{1+3+3^2+....+3^8}=3+\frac{1}{1+3+3^2+....+3^8}\)

\(=5+\frac{1}{1+3+3^2+....+3^8}-2\)  

Có: \(\frac{1}{1+5+5^2+...+5^8}>0\)              và      \(\frac{1}{1+3+3^2+....+3^8}-2< 0\)

\(\Rightarrow A>B\)