Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề phải cho \(x,y\) dương nữa!
Giải:
Ta có: \(xy\left(x+y\right)^2\le\dfrac{1}{64}\)
\(\Leftrightarrow\sqrt{xy\left(x+y\right)^2}\le\sqrt{\dfrac{1}{64}}\)
\(\Leftrightarrow\sqrt{xy}\left(x+y\right)\le\dfrac{1}{8}\)
Vậy ta cần chứng minh BĐT tương đương \(\sqrt{xy}\left(x+y\right)\le\dfrac{1}{8}\)
Áp dụng BĐT AM - GM ta có:
\(\sqrt{xy}\left(x+y\right)=\dfrac{1}{2}.2\sqrt{xy}\left(x+y\right)\)
\(\le\dfrac{1}{2}.\dfrac{x+y+2\sqrt{xy}}{4}=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^4}{8}\) \(=\dfrac{1}{8}\)
\(\Rightarrow xy\left(x+y\right)^2\le\dfrac{1}{64}\) (Đpcm)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\dfrac{1}{4}\)
a) (2x^2 +2xy - xy -y^2 ) / (2x^2 - 2xy - xy +y^2)
= 2x(x+y) - y(x+y) / 2x(x-y) - y(x-y)
= (2x-y)(x+y) / (2x-y)(x-y)
= x+y/x-y
Rút gọn cái sau:
\(\frac{32x+4x^2+2x^3}{x^3+64}\)
\(=\frac{2x\left(x^2+2x+16\right)}{\left(x+4\right)\left(x^2-4x+16\right)}\)
Đề có vẻ sai sai ?
Ta có A = 2018.2020 + 2019.2021
= (2020 - 2).2020 + 2019.(2019 + 2)
= 20202 - 2.2020 + 20192 + 2.2019
= 20202 + 20192 - 2(2020 - 2019) = 20202 + 20192 - 2 = B
=> A = B
b) Ta có B = 964 - 1= (932)2 - 12
= (932 + 1)(932 - 1) = (932 + 1)(916 + 1)(916 - 1) = (932 + 1)(916 + 1)(98 + 1)(98 - 1)
= (932 + 1)(916 + 1)(98 + 1)(94 + 1)(94 - 1)
= (932 + 1)(916 + 1)(98 + 1)(94 + 1)(92 + 1)(92 - 1)
(932 + 1)(916 + 1)(98 + 1)(94 + 1)(92 + 1).80
mà A = (932 + 1)(916 + 1)(98 + 1)(94 + 1)(92 + 1).10
=> A < B
c) Ta có A = \(\frac{x-y}{x+y}=\frac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)^2}=\frac{x^2-y^2}{x^2+2xy+y^2}< \frac{x^2-y^2}{x^2+xy+y^2}=B\)
=> A < B
d) \(A=\frac{\left(x+y\right)^3}{x^2-y^2}=\frac{\left(x+y\right)^3}{\left(x+y\right)\left(x-y\right)}=\frac{\left(x+y\right)^2}{x-y}=\frac{x^2+2xy+y^2}{x-y}< \frac{x^2-xy+y^2}{x-y}=B\)
=> A < B
Bài 1:
a) \(x^4+64\)
\(=\left(x^2\right)^2+2.x^2.8+8^2-2.x^2.8\)
\(=\left(x^2+8\right)^2-\left(4x\right)^2\)
\(=\left(x^2+8-4x\right)\left(x^2+8+4x\right)\)
b) \(x^5+x^4+1\)
\(=x^5+x^4+x^3+x^2-x^3-x^2-x+x+1\)
\(=\left(x^5+x^4+x^3\right)-\left(x^3+x^2+x\right)+\left(x^2+x+1\right)\)
\(=x^3\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^3-x+1\right)\)
c) \(x^3+y^3+z^3-3xyz\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)
\(=\left(x+y\right)^3+z^3-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)^3-3\left(x+y+z\right)\left(x+y\right)z-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left[\left(x+y+z\right)^2-3xy-3yz-3xz\right]\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2+2xy+2xz+2yz-3xy-3xz-3yz\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)\)
Bài 2:
\(xy+1=x+y\)
\(\Rightarrow xy+1-x-y=0\)
\(\Rightarrow\left(xy-x\right)-\left(y-1\right)=0\)
\(\Rightarrow x\left(y-1\right)-\left(y-1\right)=0\)
\(\Rightarrow\left(y-1\right)\left(x-1\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}y-1=0\\x-1=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y=1\\x=1\end{matrix}\right.\)
ta có : \(x^3+2x^2y+xy^2-4x=x\left(x^2+2xy+y^2-4\right)\)
\(=x\left[\left(x+y\right)^2-4\right]=x\left(x+y-2\right)\left(x+y+2\right)\)
ta có : \(5x^2+6xy+y^2=5x^2+5xy+xy+y^2\)
\(=5x\left(x+y\right)+y\left(x+y\right)=\left(x+y\right)\left(5x+y\right)\)
ta có : \(x^4+64=x^4+16x^2+64-16x^2=\left(x^2+8\right)^2-16x^2\)
\(=\left(x^2-4x+8\right)\left(x^2+4x+8\right)\)
a,\(\frac{x^2+y^2-xy}{x^2-y^2}:\frac{x^3+y^3}{x^2+y^2-2xy} =\frac{x^2+y^2-xy}{(x-y)(x+y)}\frac{(x+y)^2}{(x+y) (x^2-xy+y^2)}=\frac{1}{x-y} \)
b,\(\frac{x^3y+xy^3}{x^4y}:(x^2+y^2)=\frac{xy(x^2+y^2)}{x^4y(x^2+y^2)}=\frac{1}{x^3} \)
c,\(\frac{x^2-xy}{y}:\frac{x^2-xy}{xy+y}:\frac{x^2-1}{x^2+y} =\frac{x(x-y)y(x+y)(x^2+y)}{yx(x-y)(x^2-1)} =\frac{(x^2+y)(x+y)}{x^2-1} \)
d,\(\frac{x^2+y}{y}:(\frac{z}{x^2}:\frac{xy}{x^2y})=\frac{x^2+y}{ y}:(\frac{z}{x^2}\frac{x^2y}{xy})=\frac{x^2+y}{y}\frac{z}{x} \)
Với đk trên ta có:
P = \(\frac{2}{x}-\left(\frac{x^2}{x^2+xy}+\frac{y^2-x^2}{xy}-\frac{y^2}{xy+y^2}\right).\frac{x+y}{x^2+xy+y^2}\)
\(=\frac{2}{x}-\left(\frac{x}{x+y}-\frac{\left(x-y\right)\left(x+y\right)}{xy}-\frac{y}{x+y}\right).\frac{x+y}{x^2+xy+y^2}\)
\(=\frac{2}{x}-\left(\frac{x-y}{x+y}-\frac{\left(x-y\right)\left(x+y\right)}{xy}\right).\frac{x+y}{x^2+xy+y^2}\)
\(=\frac{2}{x}-\frac{x-y}{xy}.\left(xy-\left(x+y\right)^2\right).\frac{1}{x^2+xy+y^2}\)
\(=\frac{2}{x}+\frac{x-y}{xy}\)
\(=\frac{x+y}{xy}\)
where is câu hỏi
rút gọn hay tính hay...
\(64-x^2-y^2+xy=64-\left(x^2-xy+y^2\right)\)
= \(8^2-\left(x-y\right)^2\)
=(8-x+y)(8+x-y)