Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a)
\(\frac{x^4-3x^2+1}{x^4-x^2-2x-1}=\frac{(x^4-2x^2+1)-x^2}{(x^4-x)-(x^2+x+1)}=\frac{(x^2-1)^2-x^2}{x(x^3-1)-(x^2+x+1)}\)
\(=\frac{(x^2-1-x)(x^2-1+x)}{x(x-1)(x^2+x+1)-(x^2+x+1)}=\frac{(x^2-1-x)(x^2-1+x)}{(x^2+x+1)(x^2-x-1)}=\frac{x^2+x-1}{x^2+x+1}\)
\(=\frac{x^2+x+1-2}{x^2+x+1}=1-\frac{2}{x^2+x+1}\)
b)
Xét tử số:
\(x^3+y^3+z^3-3xyz=(x+y)^3-3xy(x+y)+z^3-3xyz\)
\(=[(x+y)^3+z^3]-3xy(x+y+z)\)
\(=(x+y+z)[(x+y)^2-(x+y)z+z^2]-3xy(x+y+z)\)
\(=(x+y+z)[(x+y)^2-(x+y)z+z^2-3xy]\)
\(=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)\)
Do đó:
\(\frac{x^3+y^3+z^3-3xyz}{x^2+y^2+z^2-xy-yz-xz}=\frac{(x+y+z)(x^2+y^2+z^2-xy-yz-xz)}{x^2+y^2+z^2-xy-yz-xz}=x+y+z\)
a/ giá trị nhỏ nhất của A là 2
b/ giá trị lớn nhất của B là 51
tớ chỉ có bài tham khảo trên mạng thôi bạn thông cảm
Ta có: x + y = 1
<=> (x + y)3 = 1
<=> x3 + y3 + 3xy(x + y) = 1
<=> x3 + y3 + 3xy = 1 (do x + y = 1)
<=> x3 + y3 = 1 - 3xy
Áp dụng BĐT Cô - si, ta có:
xy >= (x+y)24=14(x+y)24=14
<=> -3xy≥−34≥−34
Ta có x3 + y3 = 1 - 3xy ≥1−34=14≥1−34=14
Dấu "=" xảy ra khi x = y = 1212
Vậy GTNN của x3 + y3 là 1414khi x = y = 12
a) /x-5/=/2x+1/
=>x-5=2x+1 hoặc x-5=-(2x+1)
Th1 x-5=2x+1
-5-1=2x-x
x=-6
Thử lại thấy đúng
Th2: x-5=-(2x+1)
x-5=-2x-1
x+2x=-1+5
3x=4
x=4/3
Thử lại thấy đúng
Vậy x=-6 hoặc x=4/3
Các câu còn lại liên quan đến giá trị tuyệt đối thì làm tương tự
câu 6 :
số hs nữ = 34 hs
số học sinh nam giỏi = hs nữ khá
=> số hs giỏi = số hs giỏi nữ+số học sinh nam giỏi = số hs nữ giỏi + số học sinh nữ khá = số học sinh giỏi cả lớp =34
a)\(N=\left(\frac{x^2}{x^2-y^2}+\frac{y}{x-y}\right):\frac{x^3-y^3}{x^5-x^4y-xy^4+y^5}\)
\(=\left(\frac{x^2}{\left(x-y\right)\left(x+y\right)}+\frac{xy+y^2}{\left(x-y\right)\left(x+y\right)}\right):\frac{\left(x-y\right)\left(x^2+xy+y^2\right)}{\left(x^4-y^4\right)\left(x-y\right)}\)
\(=\frac{x^2+xy+y^2}{\left(x-y\right)\left(x+y\right)}:\frac{\left(x^2+xy+y^2\right)}{x^4-y^4}\)
\(=\frac{x^4-y^4}{\left(x-y\right)\left(x+y\right)}\)
\(=\frac{\left(x^2+y^2\right)\left(x^2-y^2\right)}{x^2-y^2}=x^2+y^2\)
b) Ta có: \(x+y=\frac{1}{40}\)
\(\Rightarrow\left(x+y\right)^2=\frac{1}{1600}\)
\(\Rightarrow x^2+2xy+y^2=\frac{1}{1600}\)
\(\Rightarrow x^2-\frac{1}{40}+y^2=\frac{1}{1600}\)
\(\Rightarrow x^2+y^2=\frac{1}{1600}+\frac{1}{40}\)
\(\Rightarrow x^2+y^2=\frac{41}{1600}\)
Vậy \(N=\frac{41}{1600}\)
Sửa đề chút :
\(\left(x+y+z\right)^3-x^3-y^3-z^3\)
\(=\left[\left(x+y\right)+z\right]^3-x^3-y^3-z^3\)
\(=\left(x+y\right)^3+3\left(x+y\right)^2z+3\left(x+y\right)z^2+z^3-x^3-y^3-z^3\)
\(=x^3+3x^2y+3xy^2+y^3+3\left(x+y\right)^2z+3\left(x+y\right)z^2-x^3-y^3\)
\(=3x^2y+3xy^2+3\left(x+y\right)^2z+3\left(x+y\right)z^2\)
\(=3xy\left(x+y\right)+3\left(x+y\right)^2z+3\left(x+y\right)z^2\)
\(=3\left(x+y\right)\left(xy+xz+yz+z^2\right)\)
\(=3\left(x+y\right)\left[x\left(y+z\right)+z\left(y+z\right)\right]\)
\(=3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
c) x3 + y3 + z3 - 3xyz
= x3 + 3x2y + 3xy2 + y3 + z3 - 3xyz - 3x2y - 3xy2
= (x+y)3 + z3 - 3xy.( z+x+y)
= (x+y+z).[(x+y)2 - (x+y).z + z2 ] - 3xy.(x+y+z)
= (x+y+z). ( x2 + 2xy + y2 - xz - yz + z2 - 3xy)
= (x+y+z) .(x2 + y2 + z2 - xy - xz -yz)
e) (a+b-c)2 - (a-c)2 - 2ab + 2bc
= (a+b-c - a+c).(a+b+c+a-c) - 2b.(a-c)
= b.(2a+b) - 2b.(a-c)
= b.(2a+b - a +c)
= b.( a+b+c)
xl bn nha! mk chỉ nghĩ đk 2 câu thoy, 1 câu bn kia làm r! 2 câu còn lại bn đợi người tiếp theo làm nhé
Bài 1:
a) \(x^4+64\)
\(=\left(x^2\right)^2+2.x^2.8+8^2-2.x^2.8\)
\(=\left(x^2+8\right)^2-\left(4x\right)^2\)
\(=\left(x^2+8-4x\right)\left(x^2+8+4x\right)\)
b) \(x^5+x^4+1\)
\(=x^5+x^4+x^3+x^2-x^3-x^2-x+x+1\)
\(=\left(x^5+x^4+x^3\right)-\left(x^3+x^2+x\right)+\left(x^2+x+1\right)\)
\(=x^3\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^3-x+1\right)\)
c) \(x^3+y^3+z^3-3xyz\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)
\(=\left(x+y\right)^3+z^3-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)^3-3\left(x+y+z\right)\left(x+y\right)z-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left[\left(x+y+z\right)^2-3xy-3yz-3xz\right]\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2+2xy+2xz+2yz-3xy-3xz-3yz\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)\)
Bài 2:
\(xy+1=x+y\)
\(\Rightarrow xy+1-x-y=0\)
\(\Rightarrow\left(xy-x\right)-\left(y-1\right)=0\)
\(\Rightarrow x\left(y-1\right)-\left(y-1\right)=0\)
\(\Rightarrow\left(y-1\right)\left(x-1\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}y-1=0\\x-1=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y=1\\x=1\end{matrix}\right.\)