Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(2x+1\right)^3=125\)
\(\Rightarrow2x+1=5\)
\(\Rightarrow2x=4\)
\(\Rightarrow x=2\)
Vậy \(x=2\)
b) \(1999^{2x-6}=1\)
\(\Rightarrow1999^{2x-1}=1999^0\)
\(\Rightarrow2x-1=0\)
\(\Rightarrow2x=1\)
\(\Rightarrow x=\frac{1}{2}\)
Vậy \(x=\frac{1}{2}\)
c) \(x^{2002}=x\)
\(\Rightarrow x^{2002}-x=0\)
\(\Rightarrow x.\left(x^{2001}-1\right)=0\)
\(\Rightarrow x=0\) hoặc \(x^{2001}-1=0\)
+) \(x=0\)
+) \(x^{2001}-1=0\Rightarrow x^{2001}=1\Rightarrow x=1\)
Vậy \(x\in\left\{0;1\right\}\)
d) \(\left(x-1\right)^2=9\)
\(\Rightarrow x-1=\pm3\)
+) \(x-1=3\Rightarrow x=4\)
+) \(x-1=-3\Rightarrow x=-2\)
Vậy \(x\in\left\{4;-2\right\}\)
e) \(\left(2x-3\right)^2=81\)
\(\Rightarrow2x-3=\pm9\)
+) \(2x-3=9\Rightarrow2x=12\Rightarrow x=6\)
+) \(2x-3=-9\Rightarrow2x=-6\Rightarrow x=-3\)
Vậy \(x\in\left\{6;-3\right\}\)
Các phần khác làm tương tự
a, \(5^x=625\Rightarrow5^x=5^4\Rightarrow x=4\)
b, \(4^{2x-6}=1\Rightarrow4^{2x-6}=4^0\)
\(\Rightarrow2x-6=0\Rightarrow x=3\)
c, \(\left(3x-1\right)^3=8\Rightarrow3x-1=2\)
\(\Rightarrow x=1\)
d, \(49.7^n=2401\Rightarrow7^{n+2}=7^4\)
\(\Rightarrow n+2=4\Rightarrow n=2\)
e, \(x^4.x-27.x=0\)
\(\Rightarrow x\left(x^4-27\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x^4-27=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\pm\sqrt[4]{27}\end{cases}}\)
f, \(\left(x-6\right)^3=\left(x-6\right)^2\)
\(\Rightarrow\left(x-6\right)^3-\left(x-6\right)^2=0\)
\(\Rightarrow\left(x-6\right)^2\left(x-6-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-6=0\\x-7=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=6\\x=7\end{cases}}\)
Chúc bạn học tốt!!!
\(a,5^x=625\) \(b,4^{2x-6}=1\)
\(\Rightarrow5^x=5^4\) \(\Rightarrow2x-6=0\) (Vì mọi số mũ không bằng 1)
\(\Rightarrow x=4\) \(\Rightarrow2x=6\)
\(\Rightarrow x=3\)
\(c,\left(3x-1\right)^3=8\) \(d,49.7^n=2401\)
\(\Rightarrow\left(3x-1\right)^3=2^3\) \(\Rightarrow7^n=2401:49\)
\(\Rightarrow3x-1=2\) \(\Rightarrow7^n=49\)
\(\Rightarrow3x=3\) \(\Rightarrow7^n=7^2\)
\(\Rightarrow x=1\) \(\Rightarrow n=2\)
\(e,x^4.x-27.x=0\)
\(\Rightarrow x.\left(x^4-27\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=0\\x^4-27=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x^4=27\end{cases}}}\)
\(f,\left(x-6\right)^3=\left(x-6\right)^2\)
\(\Rightarrow x.\left(x^4-27\right)=0\) \(\Rightarrow\hept{\begin{cases}\left(x-6\right)^3=\left(x-6\right)^2\\\left(x-6\right)^3=\left(x-6\right)^2\end{cases}\Rightarrow\hept{\begin{cases}\left(x-6\right)^3:\left(x-6\right)^2=1\\\left(x-6\right)^3-\left(x-6\right)^2=0\end{cases}\Rightarrow}\hept{\begin{cases}x-6=1\\x-6=0\end{cases}}\Rightarrow\hept{\begin{cases}x=7\\x=6\end{cases}}}\)
a) 3x = 81 b) 2x . 16 = 128 c) 3x : 9 = 27 d) x4 = x
3x = 34 2x = 128 : 16 3x = 27 : 9 => x = 1
=> x = 4 2x = 8 3x = 3 Vậy x= 1
Vậy x = 4 x = 4 => x = 1
Vậy x = 4 Vậy x = 1
e) ( 2x + 1 )3 = 27
( 2x + 1 )3 = 33
=> 2x + 1 = 3
2x = 3 - 1
2x = 2
x = 1
Vậy x = 1
a, 3x=81 b, 2x*16=128 c, 3x:9=27 d, x4=x
=> 3x=34 => 2x=128:16 => 3x=27.9 => x=0 hoặc x=1
=> x=4 => 2x=8 => 3x=243
=> x=4 => 3x=35
=> x=5
e, (2x+1)3=27 f, (x-2)2=(x-2)4
=> (2x+1)3=33 +, TH1: x-2=1 => (x-2)2=(x-2)4=1 => x-2=x-2=1 => x=3
=> 2x+1=3 +, TH2: x-2=0 => (x-2)2=(x-2)4=0 => x-2=x-2=0 => x=2
=> 2x=2
=> x=2:2
=> x=1
g, 25 <= 5x < 625
=> 52 <= 5x < 54
=> x={2;3}
a) \(\left(x-4\right)^2=\left(x-4\right)^4\)
\(\Rightarrow\left(x-4\right)^2-\left(x-4^4\right)=0\)
\(\Rightarrow\left(x-4\right)^2.\left[1-\left(x-4\right)^2\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-4\right)^2=0\\1-\left(x-4\right)^2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-4=0\\\left(x-4\right)^2=1^2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-4=0\\x-4=1\\x-4=-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=4\\x=5\\x=3\end{matrix}\right.\)
Ta có :
\(25\le5^x< 625\)
\(\Rightarrow5^2\le5^x< 5^4\)
\(\Rightarrow5^x\in\left(5^2;5^3\right)\)
\(\Rightarrow x\in\left(2;3\right)\)
d, \(=>\left(\frac{4}{5}\right)^{2x+7}=\left(\frac{4}{5}\right)^4.\)
=> \(2x+7=4\)
=> 2x= -3
=> x=-3/2 . Vậy x=-3/2
e, => \(\frac{7^x.7^2+7^x.7+7^x}{57}=\frac{5^{2x}+5^{2x}.5+5^{2x}.5^2}{131}.\)
=> \(\frac{7^x\left(7^2+7+1\right)}{57}=\frac{5^{2x}\left(1+5+5^2\right)}{131}\)
= > \(\frac{7^x.57}{57}=\frac{5^{2x}.131}{131}\)
=> \(7^x=5^{2x}\)
Đến đoạn này là mik nghĩ không ra nhé
Cô làm tiếp giúp Linh Đan:
\(7^x=5^{2x}\Rightarrow7^x=25^x\Rightarrow\frac{7^x}{25^x}=1\Rightarrow\left(\frac{7}{25}\right)^x=1\Rightarrow x=0\)
a, (x-1) . 0,5 = 7,5 : (x-1)
=> = ( x - 1 ) 0,5 = \(\frac{x-1}{2}\)
\(=\frac{7,5}{x-1}=\frac{15}{2\left(x-1\right)}\)
=> x = - 1 \(\sqrt{15}\)
x = \(\sqrt{15+1}\)
đề sao sao ý
a) \(625^4:25^7\)
\(=\left[25^2\right]^4:25^7\)
\(=25^8:25^7\)
\(=25\)
b)\(\left(100^5-89^5\right).\left(6^8-8^6\right).\left(8^2-4^3\right)\)
\(=\left(100^5-89^5\right).\left(6^8-8^6\right).\left[\left(2^3\right)^2-\left(2^2\right)^3\right]\)
\(=\left(100^5-89^5\right).\left(6^8-8^6\right).\left[2^6-2^6\right]\)
\(=\left(100^5-89^5\right).\left(6^8-8^6\right).0\)
\(=0\)
52x . 55x = 55x . 52x
55x . 52x = 54
55x . 52x = 625
\(\dfrac{8909}{10000}\)