Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3/1.4+3/4.7+3/7.10+3/10.13
=1 - 1/4 + 1/4 - 1/7 + 1/7 - 1/10 + 1/10 - 1/13
=1 - 1/13
=12/13
\(A=3.\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{97.100}\right)\)
\(A=3.\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{97}-\dfrac{1}{100}\right)\)
\(A=3.\left(1-\dfrac{1}{100}\right)\)
\(A=3.\dfrac{99}{100}=\dfrac{297}{100}\)
3/1.4 + 3/4.7 + .. +3/13.16
= 1/1 - 1/4 + 1/4 - 1/7 + 1/7 - 1/10 + 1/10 - 1/13 + 1/13 - 1/16
= 1/1 - 1/16
= 15/16
A:3=\(\frac{3}{1.4}+\frac{3}{4.7}\)\(+.....+\frac{3}{97.100}\)
A:3=\(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+....+\frac{1}{97}-\frac{1}{100}\)
A:3=\(\frac{1}{1}-\frac{1}{100}\)
A:3=\(\frac{99}{100}\)
A=\(\frac{99}{100}.3\)
A=\(\frac{297}{100}\)
\(A:3=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+....+\frac{3}{97.100}\)
\(A:3=\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(A:3=\frac{1}{1}-\frac{1}{100}\)
\(A:3=\frac{99}{100}\)
\(A=\frac{99}{100}.3\)
\(A=\frac{297}{100}\)
\(A=\frac{3^2}{1.4}+\frac{3^2}{4.7}+\frac{3^2}{7.10}+.....+\frac{3^2}{97.100}\)
\(=3\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+....+\frac{3}{97.100}\right)\)
Ta thấy :
\(\frac{3}{1.4}=\frac{4-1}{1.4}=1-\frac{1}{4}\)
\(\frac{3}{4.7}=\frac{7-4}{4.7}=\frac{1}{4}-\frac{1}{7}\)
\(.........\)
\(\frac{3}{97.100}=\frac{100-97}{97.100}=\frac{1}{97}-\frac{1}{100}\)
\(\Rightarrow A=3\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+....+\frac{1}{97}-\frac{1}{100}\right)\)
\(=3\left(1-\frac{1}{100}\right)=3\cdot\frac{99}{100}=\frac{297}{100}\)
đáp án = \(\frac{297}{100}\)
đúng không?
kết bạn với mh nha
1.
E = \(\dfrac{3}{1.4}\) + \(\dfrac{3}{4.7}\) + \(\dfrac{3}{7.10}\) + \(\dfrac{3}{10.13}\) + \(\dfrac{3}{13.16}\) + \(\dfrac{3}{16.19}\) + \(\dfrac{3}{19.22}\)
E = 1 - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}\) - \(\dfrac{1}{7}\) + \(\dfrac{1}{7}\) - \(\dfrac{1}{10}\) + ... +\(\dfrac{1}{19}\) - \(\dfrac{1}{22}\)
E = 1 - \(\dfrac{1}{22}\)
E = \(\dfrac{21}{22}\)
2.
(x - 4)(x - 5) = 0
TH1:
x - 4 = 0 => x = 4
TH2:
x - 5 = 0 => x = 5
Vậy: x = 4 hoặc x = 5
= \(3\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\right)\)
= \(3\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\right)\)
= \(3\left(1-\frac{1}{100}\right)\)
= \(3\left(\frac{100}{100}-\frac{1}{100}\right)\)
= \(3.\frac{99}{100}\)
= \(\frac{297}{100}\)
\(A=3\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(A=3\left(1-\frac{1}{100}\right)=3.\frac{99}{100}=\frac{297}{100}\)
Nguyễn Huy Thắng giải sai rồi ,thế này mới đúng nè
1,\(\frac{1}{6}+\frac{1}{12}+.........+\frac{1}{72}\)
=\(\frac{1}{2.3}+\frac{1}{3.4}+.......+\frac{1}{8.9}\)
=\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.......+\frac{1}{8}-\frac{1}{9}\)
=\(\frac{1}{2}-\frac{1}{9}\)
=\(\frac{7}{18}\)
2,\(\frac{3}{1.4}+\frac{3}{4.7}+..........+\frac{3}{13.16}\)
=\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.........+\frac{1}{13}-\frac{1}{16}\)
=\(1-\frac{1}{16}\)
=\(\frac{15}{16}\)
2)đặt B= 3/1.4+3/4.7+3/7.10+3/10.13+3/13.16
\(B=3\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{16}\right)\)
\(B=3-\frac{15}{16}\)
\(B=\frac{45}{16}\)
\(\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+\dfrac{3}{7\cdot10}+\dfrac{3}{10\cdot13}+\dfrac{3}{13\cdot16}\)
\(=\dfrac{3\cdot1}{1\cdot4}+\dfrac{3\cdot1}{4\cdot7}+\dfrac{3\cdot1}{7\cdot10}+\dfrac{3\cdot1}{10\cdot13}+\dfrac{3\cdot3}{13\cdot16}\)
\(=3\cdot\left(\dfrac{1}{1\cdot4}+\dfrac{1}{4\cdot7}+\dfrac{1}{7\cdot10}+\dfrac{1}{10\cdot13}+\dfrac{1}{13\cdot16}\right)\)
\(=3\cdot\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{16}\right)\)
\(=3\cdot\left(1-\dfrac{1}{16}\right)\)
\(=3\cdot\left(\dfrac{16}{16}-\dfrac{1}{16}\right)\)
\(=3\cdot\dfrac{15}{16}\)
\(=\dfrac{45}{16}\)
ngu :3