Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nguyễn Huy Thắng giải sai rồi ,thế này mới đúng nè
1,\(\frac{1}{6}+\frac{1}{12}+.........+\frac{1}{72}\)
=\(\frac{1}{2.3}+\frac{1}{3.4}+.......+\frac{1}{8.9}\)
=\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.......+\frac{1}{8}-\frac{1}{9}\)
=\(\frac{1}{2}-\frac{1}{9}\)
=\(\frac{7}{18}\)
2,\(\frac{3}{1.4}+\frac{3}{4.7}+..........+\frac{3}{13.16}\)
=\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.........+\frac{1}{13}-\frac{1}{16}\)
=\(1-\frac{1}{16}\)
=\(\frac{15}{16}\)
2)đặt B= 3/1.4+3/4.7+3/7.10+3/10.13+3/13.16
\(B=3\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{16}\right)\)
\(B=3-\frac{15}{16}\)
\(B=\frac{45}{16}\)
\(A=\frac{3^2}{1.4}+\frac{3^2}{4.7}+\frac{3^2}{7.10}+....+\frac{3^2}{97.100}\)
\(A=3.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+....+\frac{3}{97.100}\right)\)
\(A=3.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(A=3.\left(\frac{1}{1}-\frac{1}{100}\right)=3-\frac{3}{100}=\frac{297}{100}\)
\(A=\frac{3^2}{1.4}+\frac{3^2}{4.7}+\frac{3^2}{7.10}+\frac{3^2}{10.13}+\frac{3^2}{13.16}+...+\frac{3^2}{97.100}\)
\(A=\frac{3}{1}-\frac{3}{4}+\frac{3}{4}-\frac{3}{7}+\frac{3}{7}-\frac{3}{10}+\frac{3}{10}-\frac{3}{13}+\frac{3}{13}-\frac{3}{16}+...+\frac{3}{97}-\frac{3}{100}\)
\(A=\frac{3}{1}-\frac{3}{100}\)
\(A=\frac{297}{100}\)
\(A=3.\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{97.100}\right)\)
\(A=3.\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{97}-\dfrac{1}{100}\right)\)
\(A=3.\left(1-\dfrac{1}{100}\right)\)
\(A=3.\dfrac{99}{100}=\dfrac{297}{100}\)
\(A=\frac{3^2}{1.4}+\frac{3^2}{4.7}+\frac{3^2}{7.10}+.....+\frac{3^2}{97.100}\)
\(=3\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+....+\frac{3}{97.100}\right)\)
Ta thấy :
\(\frac{3}{1.4}=\frac{4-1}{1.4}=1-\frac{1}{4}\)
\(\frac{3}{4.7}=\frac{7-4}{4.7}=\frac{1}{4}-\frac{1}{7}\)
\(.........\)
\(\frac{3}{97.100}=\frac{100-97}{97.100}=\frac{1}{97}-\frac{1}{100}\)
\(\Rightarrow A=3\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+....+\frac{1}{97}-\frac{1}{100}\right)\)
\(=3\left(1-\frac{1}{100}\right)=3\cdot\frac{99}{100}=\frac{297}{100}\)
đáp án = \(\frac{297}{100}\)
đúng không?
kết bạn với mh nha
1.
E = \(\dfrac{3}{1.4}\) + \(\dfrac{3}{4.7}\) + \(\dfrac{3}{7.10}\) + \(\dfrac{3}{10.13}\) + \(\dfrac{3}{13.16}\) + \(\dfrac{3}{16.19}\) + \(\dfrac{3}{19.22}\)
E = 1 - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}\) - \(\dfrac{1}{7}\) + \(\dfrac{1}{7}\) - \(\dfrac{1}{10}\) + ... +\(\dfrac{1}{19}\) - \(\dfrac{1}{22}\)
E = 1 - \(\dfrac{1}{22}\)
E = \(\dfrac{21}{22}\)
2.
(x - 4)(x - 5) = 0
TH1:
x - 4 = 0 => x = 4
TH2:
x - 5 = 0 => x = 5
Vậy: x = 4 hoặc x = 5
3/1.4+3/4.7+3/7.10+3/10.13
=1 - 1/4 + 1/4 - 1/7 + 1/7 - 1/10 + 1/10 - 1/13
=1 - 1/13
=12/13
\(\frac{3^2}{1.4}+\frac{3^2}{4.7}+\frac{3^2}{7.10}+\frac{3^2}{10.13}+...+\frac{3^2}{97.100}\)
\(=3.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{97.100}\right)\)
\(=3.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(=3.\left(1-\frac{1}{100}\right)\)
\(=3.\frac{99}{100}\)
x/1.4+x/4.7+x/7.10+x/10.13+x/13.16=5/2
=>x/3(1/4-1/7+1/7-1/10+1/10-1/13+1/13-1/16)=5/2
=>x/3.(1/4-1/16)=5/2
=>x/3.3/16=5/2
=>x/3=5/2:3/16
=>x/3=40/3
=>x=40
Vậy x=40
x/1.4 + x/4.7 + x/7.10 + x/10.13 + x/13.16 = 5/6
=> x.1/3.(3/1.4 + 3/4.7 + 3/7.10 + 3/10.13 + 3/13.16) = 5/6
=> x.1/3.(1 - 1/4 + 1/4 - 1/7 + 1/7 - 1/10 + 1/10 - 1/13 + 1/13 - 1/16) = 5/6
=> x.1/3.(1 - 1/16) = 5/6
=> x.1/3.15/16 = 5/6
=> x.1/3 = 5/6 : 15/16
=> x.1/3 = 8/9
=> x = 8/9 : 1/3
=> x = 8/3
\(A=3.\left(\frac{3}{1.4}+\frac{3}{4.7}+.......+\frac{3}{97.100}\right)\)
\(=3.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.........+\frac{1}{97}-\frac{1}{100}\right)\)
\(=3.\left(1-\frac{1}{100}\right)\)
\(=3.\frac{99}{100}\)
\(=\frac{297}{100}\)
Dễ thôi bạn mẫu cách nhau 3 đơn vị tử xuất hiện 3 chỉ cần rút rọn đi 3 là tử có nhé
Ta có: \(A=\frac{3^2}{1.4}+\frac{3^2}{4.7}+\frac{3^2}{7.10}+....+\frac{3^2}{97.100}\)
\(\frac{1}{3}A=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+.......+\frac{3}{97.100}\)
\(\frac{1}{3}A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.....+\frac{1}{97}-\frac{1}{100}\)
\(\frac{1}{3}A=1-\frac{1}{100}\)
\(\frac{1}{3}A=\frac{99}{100}\)
\(A=\frac{99}{100}.3=\frac{297}{100}\)
3/1.4 + 3/4.7 + .. +3/13.16
= 1/1 - 1/4 + 1/4 - 1/7 + 1/7 - 1/10 + 1/10 - 1/13 + 1/13 - 1/16
= 1/1 - 1/16
= 15/16
\(=\frac{15}{16}\)
đúng cho mk nha Minh Thư Nguyễn