Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x=\dfrac{4}{27}-\dfrac{2}{3}\)
\(x=-\dfrac{14}{27}\)
a)\(\dfrac{2}{3}x-\dfrac{5}{6}=1\dfrac{1}{4}\)
\(\dfrac{2}{3}x-\dfrac{5}{6}=\dfrac{5}{4}\)
\(\dfrac{2}{3}x=\dfrac{5}{4}+\dfrac{5}{6}\)
\(\dfrac{2}{3}x=\dfrac{25}{12}\)
\(x=\dfrac{25}{12}:\dfrac{2}{3}\)
=>\(x=\dfrac{25}{8}\)
a) \(\dfrac{2}{3}x-\dfrac{5}{6}=1\dfrac{1}{4}\) b) \(2\dfrac{1}{3}-\dfrac{4}{5}:x=0,2\)
\(\dfrac{2}{3}x-\dfrac{5}{6}=\dfrac{5}{4}\) \(\dfrac{7}{3}-\dfrac{4}{5}:x=\dfrac{1}{5}\)
\(\dfrac{2}{3}x=\dfrac{5}{4}-\dfrac{5}{6}\) \(\dfrac{4}{5}:x=\dfrac{7}{3}-\dfrac{1}{5}\)
\(\dfrac{2}{3}x=\dfrac{30}{24}-\dfrac{20}{24}\) \(\dfrac{4}{5}:x=\dfrac{35}{15}-\dfrac{3}{15}\)
\(\dfrac{2}{3}x=\dfrac{5}{12}\) \(\dfrac{4}{5}:x=\dfrac{32}{15}\)
\(x=\dfrac{5}{12}:\dfrac{2}{3}\) \(x=\dfrac{4}{5}:\dfrac{32}{15}\)
\(x=\dfrac{5}{12}:\dfrac{8}{12}\) \(x=\dfrac{4}{5}.\dfrac{15}{32}\)
\(x=\dfrac{5}{12}.\dfrac{12}{8}=\dfrac{5}{8}\) \(x=\dfrac{4.15}{5.32}\)
\(x=\dfrac{1.3}{1.8}=\dfrac{3}{8}\)
d)\(\left(\dfrac{4}{3}-\dfrac{1}{4}x\right)^3=\dfrac{-8}{27}\)
\(\left(\dfrac{4}{3}-\dfrac{1}{4}x\right)^3=\left(\dfrac{-2}{3}\right)^3\)
\(\Rightarrow\dfrac{4}{3}-\dfrac{1}{4}x=\dfrac{-2}{3}\)
\(\Rightarrow\dfrac{1}{4}x=\dfrac{4}{3}-\dfrac{-2}{3}\)
\(\Rightarrow\dfrac{1}{4}x=2\)
\(\Rightarrow x=2:\dfrac{1}{4}\)
\(\Rightarrow x=2.4=8\)
a) x.(\(\dfrac{6}{7}\)+\(\dfrac{5}{6}\))=\(\dfrac{3}{4}\)
x.\(\dfrac{71}{42}\)=\(\dfrac{3}{4}\)
x=\(\dfrac{3}{4}\):\(\dfrac{71}{42}\)
x=\(\dfrac{63}{142}\)
a.\(\dfrac{6}{7}x+\dfrac{5}{6}x=\dfrac{3}{4}\)
\(x.\left(\dfrac{6}{7}+\dfrac{5}{6}\right)=\dfrac{3}{4}\)
\(x.\dfrac{71}{42}=\dfrac{3}{4}\)
\(x=\dfrac{3}{4}:\dfrac{71}{42}\)
\(x=\dfrac{63}{142}\)
b\(\dfrac{5}{4}-\dfrac{3}{5}:x=1\dfrac{1}{3}\)
\(\dfrac{3}{5}:x=\dfrac{5}{4}-1\dfrac{1}{3}\)
\(\dfrac{3}{5}:x=\dfrac{-1}{12}\)
\(x=\dfrac{3}{5}:\dfrac{-1}{12}\)
\(x=\dfrac{-36}{5}\)
c. \(\left(\dfrac{4}{7}x-\dfrac{1}{3}\right):3\dfrac{1}{2}=0,5\)
\(\left(\dfrac{4}{7}x-\dfrac{1}{3}\right)=0,5:3\dfrac{1}{2}\)
\(\dfrac{4}{7}x-\dfrac{1}{3}=\dfrac{1}{7}\)
\(\dfrac{4}{7}x=\dfrac{1}{7}+\dfrac{1}{3}\)
\(\dfrac{4}{7}x=\dfrac{10}{21}\)
\(x=\dfrac{10}{21}:\dfrac{4}{7}\)
\(x=\dfrac{5}{6}\)
d.\(\dfrac{4}{5}-\dfrac{2}{3}x=1\dfrac{1}{4}+2,5x\)
\(\dfrac{4}{5}-\left(\dfrac{2}{3}x-2,5x\right)=1\dfrac{1}{4}\)
\(\dfrac{4}{5}-\dfrac{-11}{6}x=1\dfrac{1}{4}\)
\(\dfrac{-11}{6}x=\dfrac{4}{5}-1\dfrac{1}{4}\)
\(\dfrac{-11}{6}x=\dfrac{-9}{20}\)
\(x=\dfrac{-9}{20}:\dfrac{-11}{6}\)
\(x=\dfrac{27}{110}\)
có sai sót j xin bn thông cảm !
\(\dfrac{200-\left(3+\dfrac{2}{3}+\dfrac{2}{4}+\dfrac{2}{5}+...+\dfrac{2}{100}\right)}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}}\\ =\dfrac{200-2-\left(1+\dfrac{2}{3}+\dfrac{2}{4}+...+\dfrac{2}{100}\right)}{\left(1-\dfrac{1}{2}\right)+\left(1-\dfrac{1}{3}\right)+\left(1-\dfrac{1}{4}\right)+...+\left(1-\dfrac{99}{100}\right)}\\ =\dfrac{198-\left(\dfrac{2}{2}+\dfrac{2}{3}+\dfrac{2}{4}...+\dfrac{2}{100}\right)}{\left(1+1+1+...+1\right)-\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)}\\ =\dfrac{2\cdot99-2\cdot\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)}{99-\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)}\\ =\dfrac{2\cdot\left[99-\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)\right]}{99-\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)}=2\left(đpcm\right)\)
a) Ta có: \(\left|2x-\dfrac{1}{3}\right|\ge0\forall x\)
\(\Leftrightarrow\left|2x-\dfrac{1}{3}\right|-\dfrac{7}{4}\ge-\dfrac{7}{4}\forall x\)
Dấu '=' xảy ra khi \(2x=\dfrac{1}{3}\)
hay \(x=\dfrac{1}{6}\)
Vậy: \(A_{min}=-\dfrac{7}{4}\) khi \(x=\dfrac{1}{6}\)
b) Ta có: \(\dfrac{1}{3}\left|x-2\right|\ge0\forall x\)
\(\left|3-\dfrac{1}{2}y\right|\ge0\forall y\)
Do đó: \(\dfrac{1}{3}\left|x-2\right|+\left|3-\dfrac{1}{2}y\right|\ge0\forall x,y\)
\(\Leftrightarrow\dfrac{1}{3}\left|x-2\right|+\left|3-\dfrac{1}{2}y\right|+4\ge4\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-2=0\\3-\dfrac{1}{2}y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=6\end{matrix}\right.\)
Vậy: \(B_{min}=4\) khi x=2 và y=6
a) \(\dfrac{1}{3}x-\dfrac{1}{2}=\dfrac{3}{4}x+\dfrac{1}{15}\)
\(\Rightarrow\dfrac{1}{3}x-\dfrac{3}{4}x=\dfrac{1}{2}+\dfrac{1}{15}\)
\(\Rightarrow\dfrac{4}{12}x-\dfrac{9}{12}x=\dfrac{15}{30}+\dfrac{2}{30}\)
\(\Rightarrow\dfrac{-5}{12}x=\dfrac{17}{30}\)
\(\Rightarrow x=\dfrac{-102}{75}\)
\(\left(x-\dfrac{2}{9}\right)^3=\left(\dfrac{2}{3}\right)^6\)
\(\Rightarrow\left(x-\dfrac{2}{9}\right)^3=\dfrac{64}{729}\)
\(\Rightarrow x-\dfrac{2}{9}=\dfrac{4}{9}\)
\(\Rightarrow x=\dfrac{2}{3}\)
B= 1/3+1/4>1/4+1/4=1/2
C= 1/5+1/6+1/7+1/8>1/8+1/8+1/8+1/8=4/8=1/2
D= 1/9+1/10+1/11+...+1/16>1/16+1/16+...+1/16=8/16=1/2
E= 1/17+1/18+...+1/32>1/32+1/32+...1/32=16/32=1/2
vậy A=B+C+D+E>1/2+1/2+1/2+1/2=2
A>2
Mik không hiểu câu hỏi cho lắm bn có thể giải thích giúp mik đc hk?????????
Tìm x mà