K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2018

lấy máy tính bấm nghiệm ra

\(=2x^4-6x^3-x^3+3x^2-5x^2+15x-2x+6\)

\(=2x^3\left(x-3\right)-x^2\left(x-3\right)-5x\left(x-3\right)-2\left(x-3\right)\)

\(=\left(x-3\right)\left(2x^3-x^2-5x-2\right)\)

\(=\left(x-3\right)\left(2x^3-4x^2+3x^2-6x+x-2\right)\)

\(=\left(x-3\right)\left[2x^2\left(x-2\right)+3x\left(x-2\right)+\left(x-2\right)\right]\)

\(=\left(x-3\right)\left(x-2\right)\left(2x^2+3x+1\right)\)

\(=\left(x-3\right)\left(x-2\right)\left(x+1\right)\left(2x+1\right)\)

19 tháng 8 2019

\(-2x^2+7x-3\)

\(=-2x^2+6x+x-3\)

\(=-2x\left(x-3\right)+\left(x-3\right)\)

\(=\left(x-3\right)\left(-2x+1\right)\)

18 tháng 5 2019

( x-2) (x+1) (2x-5)

18 tháng 5 2019

\(=2x^3+2x^2-9x^2-9x+10x+10\)

\(=2x^2\left(x+1\right)-9x\left(x+1\right)+10\left(x+1\right)\)

\(=\left(x+1\right)\left(2x^2-9x+10\right)\)

\(=\left(x+1\right)\left[\left(2x^2-4x\right)-\left(5x-10\right)\right]\)

\(=\left(x+1\right)\left[2x\left(x-2\right)-5\left(x-2\right)\right]\)

\(=\left(x+1\right)\left(x-2\right)\left(2x-5\right)\)

4 tháng 3 2021

a) \(4x^4+4x^3+5x^2+2x+1\)

\(x^2\left(4x^2+4x+5+\frac{4}{x}+\frac{1}{x^2}\right)\)

=\(x^2\left[\left(4x^2+\frac{1}{x^2}\right)+2\left(2x+\frac{1}{x}\right)+5\right]\)(1)

Đặt \(2x+\frac{1}{x}=a\)thì \(\left(2x+\frac{1}{x}\right)^2=a^2\)\(\Rightarrow4x^2+\frac{1}{x^2}=a^2-4\)

Thay vào (1), ta có:

\(x^2\left(a^2-4+2a+5\right)\)

=\(x^2\left(a^2+2a+1\right)\)

=\(x^2\left(a+1\right)^2\)

=\(\left[x\left(a+1\right)\right]^2\)

=\(\left[x\left(2x+\frac{1}{x}+1\right)\right]^2\)

=\(\left(2x^2+1+x\right)^2\)

\(=\left(2x^2+x+1\right)^2\)

3 tháng 3 2021

a) Đặt f(x) = 4x4 + 4x3 + 5x2 + 2x + 1

Sau khi phân tích thì đa thức có dạng ( 2x2 + ax + 1 )( 2x2 + bx + 1 )

=> f(x) = ( 2x2 + ax + 1 )( 2x2 + bx + 1 )

<=> f(x) = 4x4 + 2bx3 + 2x2 + 2ax3 + abx2 + ax + 2x2 + bx + 1

<=> f(x) = 4x4 + ( a + b )2x3 + ( ab + 4 )x2 + ( a + b )x + 1

Đồng nhất hệ số ta có : \(\hept{\begin{cases}a+b=2\\ab=1\end{cases}\Leftrightarrow}a=b=1\)

Vậy f(x) = 4x4 + 4x3 + 5x2 + 2x + 1 = ( 2x2 + x + 1 )2

b) 3x4 + 11x3 - 7x2 - 2x + 1

= 3x4 - x3 + 12x3 - 4x2 - 3x2 + x - 3x + 1

= x3( 3x - 1 ) + 4x2( 3x - 1 ) - x( 3x - 1 ) - ( 3x - 1 )

= ( 3x - 1 )( x3 + 4x2 - x - 1 )

30 tháng 7 2018

\(-2x^4-7x^3-x^2+7x+3\)

\(=-2x^3\left(x+1\right)-5x^2\left(x+1\right)+4x\left(x+1\right)+3\left(x+1\right)\)

\(=-\left(x+1\right)\left(2x^3+5x^2-4x-3\right)\)

\(=-\left(x+1\right)\left[2x^2\left(x-1\right)+7x\left(x-1\right)+3\left(x-1\right)\right]\)

\(=-\left(x+1\right)\left(x-1\right)\left(2x^2+7x+3\right)\)

\(=-\left(x+1\right)\left(x-1\right)\left(x+3\right)\left(2x+1\right)\)

8 tháng 10 2015

B= 2x^2+2x+3x+3
= 2x(x+1)+3(x+1)
=(x+1)( 2x+3)

C=3x^2-6x-x+2
=3x(x-2)-(x-2)
=(x-2)(3x-1)

20 tháng 8 2018

\(2x^4+7x^3-2x^2-13x+6\)

\(=2x^4+6x^3+x^3+3x^2-5x^2-15x+2x+6\)

\(=2x^3\left(x+3\right)+x^2\left(x+3\right)-5x\left(x+3\right)+2\left(x+3\right)\)

\(=\left(2x^3+x^2-5x+2\right)\left(x+3\right)\)

\(=\left(2x^3+4x^2-3x^2-6x+x+2\right)\left(x+3\right)\)

\(=\left[2x^2\left(x+2\right)-3x\left(x+2\right)+\left(x+2\right)\right]\left(x+3\right)\)

\(=\left(2x^2-3x+1\right)\left(x+2\right)\left(x+3\right)\)

\(=\left(2x^2-2x-x+1\right)\left(x+2\right)\left(x+3\right)\)

\(=\left[2x\left(x-1\right)-\left(x-1\right)\right]\left(x+2\right)\left(x+3\right)\)

\(=\left(2x-1\right)\left(x-1\right)\left(x+2\right)\left(x+3\right)\)