Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2^5\left(\frac{1}{2}\right)^{2a}< \left(\frac{1}{32}\right)^{12}\Leftrightarrow2^5.2^{-2a}< \left(2^5\right)^{-12}\)
\(\Leftrightarrow2^{5-2a}< 2^{-60}\Rightarrow5-2a< -60\Leftrightarrow a>32,5\)
Số nguyên a nhỏ nhất thoả mãn đề bài là a=33
\(2^5\left(\frac{1}{2}\right)^{2a}=2^5.\frac{1}{2^{2a}}=\frac{2^5}{2^{2a}}=\frac{1}{2^{2a-5}};\left(\frac{1}{32}\right)^{12}=\frac{1}{32^{12}}=\frac{1}{\left(2^5\right)^{12}}=\frac{1}{2^{60}}\)
Ta cần tìm số nguyên a nhỏ nhất để \(\frac{1}{2^{2a-5}}< \frac{1}{2^{60}}\Rightarrow2^{2a-5}>2^{60}\Rightarrow2a-5>60\)
=>2a>65=>\(a>\frac{65}{2}=32,5\) mà a là số nguyên nhỏ nhất => a=33
\(\Leftrightarrow\frac{2^5}{2^{2a}}< \frac{1}{2^5}\Leftrightarrow\frac{1}{2^{2a-5}}< \frac{1}{2^5}\Leftrightarrow2^{2a-5}>2^5\)
\(2a-5>5\Leftrightarrow2a>10\Leftrightarrow a>5\)
vì a là số nguyên nhỏ nhất nên a =6
Ta có:\(2^5\left(\frac{1}{2}\right)^{2a}< \left(\frac{1}{32}\right)^{12}\)
\(\Leftrightarrow2^5\left(\frac{1}{4}\right)^a< 2^5\cdot\left(\frac{1}{2^{10}}\right)^{12}\)
\(\Leftrightarrow\left(\frac{1}{4}\right)^a< \left(\frac{1}{2^{10}}\right)^{12}\)
\(\Leftrightarrow\left(\frac{1}{2^{2a}}\right)< \left(\frac{1}{2^{10\cdot12}}\right)\)
\(\Leftrightarrow2a>120\)
\(\Leftrightarrow a>60\)
Mà a là số nguyên nhỏ nhất nên a=61
a, Để A lớn nhất thì \(\left(x+\frac{1}{2}\right)^2\) phải nhỏ nhất
Mà \(\left(x+\frac{1}{2}\right)^2>=0\)
\(\Rightarrow\left(x+\frac{1}{2}\right)^2=0\)
\(\Rightarrow A=3,5-\left(x+\frac{1}{2}\right)^2\)có giá trị lớn nhất là 3,5
b, Để B đạt giá trị nhỏ nhất thì \(8-\left(x+\frac{1}{3}\right)^2\)phải lớn nhất
\(8-\left(x+\frac{1}{3}\right)^2\)lớn nhất thì \(\left(x+\frac{1}{3}\right)^2\)nhỏ nhất
tương tự câu a ta có \(\left(x+\frac{1}{3}\right)^2=0\Rightarrow\)\(8-\left(x+\frac{1}{3}\right)^2=8\)
\(\Rightarrow B=\frac{3}{8-\left(x+\frac{1}{3}\right)^2}\)đạt giá trị nhỏ nhất là \(\frac{3}{8}\)
1.
a) \(x\in\left\{4;5;6;7;8;9;10;11;12;13\right\}\)
b) x=0
d) \(x=\frac{-1}{35}\) hoặc \(x=\frac{-13}{35}\)
e) \(x=\frac{2}{3}\)
a)Ta thấy:
\(-\left|\frac{1}{3}x+2\right|\le0\)
\(\Rightarrow5-\left|\frac{1}{3}x+2\right|\le5-0=5\)
\(\Rightarrow B\le5\)
Dấu "=" xảy ra khi x=-6
Vậy MaxB=5<=>x=-6
b)Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\).Ta có:
\(\left|\frac{1}{2}x-3\right|+\left|\frac{1}{2}x+5\right|\ge\left|\frac{1}{2}x-3+5-\frac{1}{2}x\right|=2\)
\(\Rightarrow C\ge2\)
Dấu "=" xảy ra khi \(\orbr{\begin{cases}x=6\\x=-10\end{cases}}\)
Vậy MinC=2<=>x=6 hoặc -10
Bài 4:
x O y z m n
Giải:
Vì Om là tia phân giác của góc xOz nên:
mOz = 1/2.xOz
Vì On là tia phân giác của góc zOy nên:
zOn = 1/2 . zOy
Ta có: xOz + zOy = 180o ( kề bù )
=> 1/2(xOz + zOy) = 1/2 . 180o
=> 1/2.xOz + 1/2.zOy = 90o
=> mOz + zOn = 90o
=> mOn = 90o (đpcm)
Bài 2:
7^6 + 7^5 - 7^4 = 7^4.( 7^2 + 7 - 1 ) = 7^4 . 55 chia hết cho 55
Vậy 7^6 + 7^5 - 7^4 chia hết cho 55
A = 1 + 5 + 5^2 + ... + 5^50
=> 5A = 5 + 5^2 + 5^3 + ... + 5^51
=> 5A - A = ( 5 + 5^2 + 5^3 + ... + 5^51 ) - ( 1 + 5 + 5^2 + ... + 5^50 )
=> 4A = 5^51 - 1
=> A = ( 5^51 - 1 )/4
a=12 bạn ạ
đúng đó
Trả lời rõ ràng ra đc ko ?