Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2^{2021}+2^{2022}\right):2^{2020}=2^{2021}:2^{2020}+2^{2022}:2^{2020}\)
\(=2^{2021-2020}+2^{2022-2020}=2^1+2^2=2+4=6\)
(22021 + 22022) : 22020
= (2 + 22).22020 : 22020
= 2 + 4
= 6
2020/2021<1
2021/2022<1
2022/2023<1
2023/2020=1+1/2020+1/2020+1/2020>1+1/2021+1/2022+1/2023
=>B>2020/2021+2021/2022+2022/2023+1/2021+1/2022+1/2023+1=4
B = \(\dfrac{1}{2002}\) + \(\dfrac{2}{2021}\) + \(\dfrac{3}{2020}\)+...+ \(\dfrac{2021}{2}\) + \(\dfrac{2022}{1}\)
B = \(\dfrac{1}{2002}\) + \(\dfrac{2}{2021}\) + \(\dfrac{3}{2020}\)+...+ \(\dfrac{2021}{2}\) + 2022
B = 1 + ( 1 + \(\dfrac{1}{2022}\)) + ( 1 + \(\dfrac{2}{2021}\)) + \(\left(1+\dfrac{3}{2020}\right)\)+ ... + \(\left(1+\dfrac{2021}{2}\right)\)
B = \(\dfrac{2023}{2023}\) + \(\dfrac{2023}{2022}\) + \(\dfrac{2023}{2021}\) + \(\dfrac{2023}{2020}\) + ...+ \(\dfrac{2023}{2}\)
B = 2023 \(\times\) ( \(\dfrac{1}{2023}\) + \(\dfrac{1}{2022}\) + \(\dfrac{1}{2021}\) + \(\dfrac{1}{2020}\)+ ... + \(\dfrac{1}{2}\))
Vậy B > C
Đặt B=2023−2022+2021−2020+...+3−2+1�=2023-2022+2021-2020+...+3-2+1
B=(2023−2022)+(2021−2020)+...+(3−2)+1�=(2023-2022)+(2021-2020)+...+(3-2)+1
Đặt A=(2023−2022)+(2021−2020)+...+(3−2)�=(2023-2022)+(2021-2020)+...+(3-2)
Biểu thức A� có số số hạng là:
(2023−2):1+1=2022(2023-2):1+1=2022 (số hạng)
Số nhóm được lập là:
2022:2=10112022:2=1011 (nhóm)
A=1+1+...+1�=1+1+...+1 [10111011 số hạng]
A=1×1011=1011�=1×1011=1011
⇒B=1011+1=1012⇒�=1011+1=1012
Vậy B=1012
a: =2+6*(-1)^2019+2026
=2028-6
=2022
b: \(=\dfrac{4}{3}\cdot\dfrac{9}{8}\cdot\dfrac{16}{15}...\cdot\dfrac{625}{624}\)
\(=\dfrac{2^2}{\left(2-1\right)\left(2+1\right)}\cdot\dfrac{3^2}{\left(3-1\right)\left(3+1\right)}\cdot\dfrac{4^2}{\left(4-1\right)\left(4+1\right)}...\cdot\dfrac{625}{\left(25-1\right)\left(25+1\right)}\)
\(=\dfrac{2\cdot3\cdot4\cdot...\cdot49}{1\cdot2\cdot3\cdot...\cdot48}\cdot\dfrac{2\cdot3\cdot4\cdot...\cdot49}{3\cdot4\cdot5\cdot...\cdot50}\)
\(=\dfrac{49}{1}\cdot\dfrac{2}{50}=\dfrac{98}{50}=\dfrac{49}{25}\)
\(=2023-1^{2020}+1=2023\)