Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2012 . | x - 2011| + (x-2011)2 = 2013 . | 2011 - x|
|x-2011|.|x-2011| + 2012 . | x - 2011| - 2013 . | 2011- x| =0
|x - 2011|.| x - 2011| + 2012 .| x - 2011| - 2013 | x - 2011| = 0
| x- 2011| .| x -2011| - | x - 2011| = 0
| x - 2011|. { | x - 2011| - 1} = 0
\(\left[{}\begin{matrix}\left|x-2011\right|=0\\\left|x-2011\right|-1=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=2011\\x=2012\\x=2010\end{matrix}\right.\)
Kết luận x \(\in\) { 2010; 2011; 2012}
x=100
nên x+1=101
\(f\left(x\right)=x^{2014}-\left(x+1\right)\left(x^{2013}-x^{2012}+...-x^2+x\right)+25\)
\(=x+25\)
=x+25=100+25=125
Lời giải:
Ta có:
\(\left(\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2011}\right)(x-2013)>3x-6039\)
\(\Leftrightarrow \left(\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2011}\right)(x-2013)-(3x-6039)>0\)
\(\Leftrightarrow \left(\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2011}\right)(x-2013)-3(x-2013)>0\)
\(\Leftrightarrow (x-2013)\left(\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2011}-3\right)>0\)
Ta thấy:
\(\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2011}-3=1-\frac{1}{2012}+1-\frac{1}{2013}+1+\frac{2}{2011}-3\)
\(=\frac{1}{2011}-\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2013}>0\)
Do đó, để \( (x-2013)\left(\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2011}-3\right)>0\) thì \(x-2013>0\)
\(\Leftrightarrow x>2013\). Vì $x$ là số nguyên bé nhất nên $x=2014$
\(2012.\left|x-2011\right|+\left(x-2011\right)^2=2013\left|2011-x\right|\)
\(2012.\left|x-2011\right|+\left|x-2011\right|^2=2013\left|x-2011\right|\)
\(\left|x-2011\right|\left(2012+\left|x-2011\right|\right)=2013\left|x-2011\right|\)
\(\Rightarrow2012+\left|x-2011\right|=2013\)
\(\left|x-2011\right|=1\)
\(\Rightarrow\orbr{\begin{cases}x=2012\\x=-2010\end{cases}}\)