K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2018

\(2012.\left|x-2011\right|+\left(x-2011\right)^2=2013\left|2011-x\right|\)

\(2012.\left|x-2011\right|+\left|x-2011\right|^2=2013\left|x-2011\right|\)

\(\left|x-2011\right|\left(2012+\left|x-2011\right|\right)=2013\left|x-2011\right|\)

\(\Rightarrow2012+\left|x-2011\right|=2013\)

\(\left|x-2011\right|=1\)

\(\Rightarrow\orbr{\begin{cases}x=2012\\x=-2010\end{cases}}\)

1 tháng 1 2023

2012 . | x - 2011| + (x-2011)2 = 2013 . | 2011 - x|

|x-2011|.|x-2011| + 2012 . | x - 2011| - 2013 . | 2011- x| =0

|x - 2011|.| x - 2011| + 2012 .| x - 2011| - 2013 | x - 2011| = 0

| x- 2011| .| x -2011|  - | x - 2011| = 0

| x - 2011|. { | x - 2011| - 1} = 0

\(\left[{}\begin{matrix}\left|x-2011\right|=0\\\left|x-2011\right|-1=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=2011\\x=2012\\x=2010\end{matrix}\right.\)

Kết luận x \(\in\) { 2010; 2011; 2012}

x=100

nên x+1=101

\(f\left(x\right)=x^{2014}-\left(x+1\right)\left(x^{2013}-x^{2012}+...-x^2+x\right)+25\)

\(=x+25\)

=x+25=100+25=125

AH
Akai Haruma
Giáo viên
7 tháng 5 2019

Lời giải:

Ta có:

\(\left(\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2011}\right)(x-2013)>3x-6039\)

\(\Leftrightarrow \left(\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2011}\right)(x-2013)-(3x-6039)>0\)

\(\Leftrightarrow \left(\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2011}\right)(x-2013)-3(x-2013)>0\)

\(\Leftrightarrow (x-2013)\left(\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2011}-3\right)>0\)

Ta thấy:

\(\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2011}-3=1-\frac{1}{2012}+1-\frac{1}{2013}+1+\frac{2}{2011}-3\)

\(=\frac{1}{2011}-\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2013}>0\)

Do đó, để \( (x-2013)\left(\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2011}-3\right)>0\) thì \(x-2013>0\)

\(\Leftrightarrow x>2013\). Vì $x$ là số nguyên bé nhất nên $x=2014$