Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A = \(\frac{3}{1.2}+\frac{3}{2.3}+\frac{3}{3.4}+.....+\frac{3}{99.100}\)
\(\frac{1}{3}A\)\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{99}-\frac{1}{100}\)
\(\frac{1}{3}A\)\(=1-\frac{1}{100}\)
=> \(\frac{1}{3}A=\frac{99}{100}\)
=> A = \(\frac{99}{100}.3=\frac{297}{100}\)
\(\frac{3}{1.2}+\frac{3}{2.3}+..................+\frac{3}{99.100}\)
\(=3.\left(\frac{1}{1.2}+\frac{1}{2.3}+..................+\frac{1}{99.100}\right)\)
\(=3.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.................+\frac{1}{99}-\frac{1}{100}\right)\)
\(=3.\left(1-\frac{1}{100}\right)\)
\(=3.\frac{99}{100}\)
\(=\frac{297}{100}\)
Giải:
\(\dfrac{5}{1.2}+\dfrac{5}{2.3}+\dfrac{5}{3.4}+...+\dfrac{5}{98.99}+\dfrac{5}{99.100}\)
\(=5.\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{98.99}+\dfrac{1}{99.100}\right)\)
\(=5.\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(=5.\left(1-\dfrac{1}{100}\right)\)
\(=5.\dfrac{99}{100}\)
\(=\dfrac{99}{20}\)
Chúc em học tốt!
Giải:
51.2+52.3+53.4+...+598.99+599.10051.2+52.3+53.4+...+598.99+599.100
=5.(11.2+12.3+13.4+...+198.99+199.100)=5.(11.2+12.3+13.4+...+198.99+199.100)
=5.(1−12+12−13+13−14+...+198−199+199−1100)=5.(1−12+12−13+13−14+...+198−199+199−1100)
=5.(1−1100)=5.(1−1100)
=5.99100=5.99100
=9920=9920
\(A=1.2+2.3+3.4+...+99.100\)
\(\Rightarrow3A=3.\left(1.2+2.3+3.4+...+99.100\right)\)
\(\Rightarrow3A=1.2.3+2.3.3+3.4.3+...+99.100.3\)
\(\Rightarrow3A=1.2.\left(3-0\right)+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+99.100.\left(101-98\right)\)
\(\Rightarrow3A=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100\)
\(\Rightarrow3A=99.100.101\)
\(\Rightarrow A=\frac{99.100.101}{3}\)
Ta có: A= \(1.2+2.3+3.4+....+99.100\)
=> \(3A=1.2.3+2.3.3+3.4.3+....+99.100.3\)
\(\Rightarrow3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+....+99.100.101-98.99.100\)
\(\Rightarrow3A=99.100.101\)
\(\Rightarrow3A=999900\)
\(\Rightarrow A=333300\)
#)Giải :
Đặt \(A=4-\frac{2}{1.2}-\frac{2}{2.3}-\frac{2}{3.4}-...-\frac{2}{99.100}\)
\(A=4-\left(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{99.100}\right)\)
\(A=4-2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)
\(A=4-2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(A=4-2\left(1-\frac{1}{100}\right)\)
\(A=4-2\times\frac{99}{100}\)
\(A=4-\frac{99}{50}\)
\(A=\frac{101}{50}\)
2, \(\frac{10}{1.2.3}+\frac{10}{2.3.4}+\frac{10}{3.4.5}+....+\frac{10}{100.101.102}\)
\(=\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{102-100}{100.101.102}\)
\(=\frac{10}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{100.101}-\frac{1}{101.102}\right)\)
\(=\frac{10}{2}.\left(\frac{1}{1.2}-\frac{1}{101.102}\right)\)
\(=\frac{10}{2}.\frac{2575}{5151}\)
\(=2,499514657\)
a)\(\frac{13}{15}+\frac{13}{35}+\frac{13}{63}+\frac{13}{99}\)
\(=\frac{13}{3.5}+\frac{13}{5.7}+\frac{13}{7.9}+\frac{13}{9.11}\)
\(=\frac{13}{2}\left(\frac{1}{3}-\frac{1}{5}+.....+\frac{1}{9}-\frac{1}{11}\right)\)
\(=\frac{13}{2}\left(\frac{1}{3}-\frac{1}{11}\right)\)
\(=\frac{13}{2}\cdot\frac{8}{33}\)
\(=\frac{52}{33}\)
a) Đặt A= 13/15 + 13/35 + 13/63 + 13/99
A = 13/2 ( 2/15 + 2/35 + 2/63 + 2/99)
A= 13/2 ( 2/ 3.5 + 2/5.7 + 2/7.9 + 2/9.11)
A= 13/2 ( 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + 1/9 - 1/11)
A= 13/2 ( 1/3 - 1/11)
A= 13/2 . 8/33
A= 52/33
A=\(\frac{1}{2}\).\(\frac{2}{3}\)....\(\frac{2012}{2013}\)=\(\frac{1}{2013}\)
B=\(\frac{2012}{2012.2013}\)=\(\frac{1}{2013}\)
vậy A=B
a) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.......+\frac{1}{2017.2018}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-..........-\frac{1}{2018}\)
\(=1-\frac{1}{2018}\)
\(=\frac{2018}{2018}-\frac{1}{2018}=\frac{2017}{2018}\)
b) \(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+..........+\frac{2}{2017.2018}+\frac{2}{2018.2019}\)
\(=2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.........+\frac{1}{2017.2018}+\frac{1}{2018.2019}\right)\)
\(=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-.........-\frac{1}{2018}+\frac{1}{2018}-\frac{1}{2019}\right)\)
\(=2\left(1-\frac{1}{2019}\right)\)
\(=2\left(\frac{2019}{2019}-\frac{1}{2019}\right)\)
\(=2.\frac{2018}{2019}\)
\(=\frac{4036}{2019}\)
Phần c tương tự nha
a) \(\frac{1}{1.2}\) + \(\frac{1}{2.3}\) + .......+ \(\frac{1}{2017.2018}\)
= 1 - \(\frac{1}{2}\) + \(\frac{1}{2}\) - \(\frac{1}{3}\) + .......+ \(\frac{1}{2017}\) - \(\frac{1}{2018}\)
= 1 - \(\frac{1}{2018}\) = \(\frac{2017}{2018}\)
câu a) mik sửa đề một tí ko biết có đúng ko
câu b , c tương tự nhưng cần lấy tử ra chung
Gọi \(A=1×2+2×3+..+99×100\)
\(3A=1.2.3+2.3.3+...+999.100.3=1.2\left(3-0\right)+2.3\left(4-1\right)+...+98.99\left(100-97\right)=1.2.3+2.3.4-1.2.3+...-98.99.100-99.100.101=99.100.101\)
\(A=\frac{99.100.101}{3}=333300\)