K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2017

2, \(\frac{10}{1.2.3}+\frac{10}{2.3.4}+\frac{10}{3.4.5}+....+\frac{10}{100.101.102}\)

  \(=\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{102-100}{100.101.102}\)

  \(=\frac{10}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{100.101}-\frac{1}{101.102}\right)\)

  \(=\frac{10}{2}.\left(\frac{1}{1.2}-\frac{1}{101.102}\right)\)

  \(=\frac{10}{2}.\frac{2575}{5151}\)

  \(=2,499514657\)

24 tháng 6 2017

= 2,499514657 bạn nhé

22 tháng 6 2017

a)\(\frac{13}{15}+\frac{13}{35}+\frac{13}{63}+\frac{13}{99}\)

\(=\frac{13}{3.5}+\frac{13}{5.7}+\frac{13}{7.9}+\frac{13}{9.11}\)

\(=\frac{13}{2}\left(\frac{1}{3}-\frac{1}{5}+.....+\frac{1}{9}-\frac{1}{11}\right)\)

\(=\frac{13}{2}\left(\frac{1}{3}-\frac{1}{11}\right)\)

\(=\frac{13}{2}\cdot\frac{8}{33}\)

\(=\frac{52}{33}\)

22 tháng 6 2017

a) Đặt A= 13/15 + 13/35 + 13/63 + 13/99

A = 13/2 ( 2/15 + 2/35 + 2/63 + 2/99)

A= 13/2 ( 2/ 3.5 + 2/5.7 + 2/7.9 + 2/9.11)

A= 13/2 ( 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + 1/9 - 1/11)

A= 13/2 ( 1/3 - 1/11) 

A= 13/2 . 8/33

A= 52/33  

9 tháng 5 2019

\(\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right)\cdot10-x=10\)10

\(\left(1-\frac{1}{10}\right)\cdot10-10=x\)

\(x=10\cdot\left(1-\frac{1}{10}-1\right)\)

\(x=10\cdot-\frac{1}{10}=-1\)

9 tháng 5 2019

\(\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right).10-x=10\)

\(\left[1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\right].10-x=10\)

\(\left[1+\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+...+\left(\frac{1}{9}-\frac{1}{9}\right)-\frac{1}{10}\right].10-x=10\)

\(\left[1-\frac{1}{10}\right].10-x=10\)

\(\frac{9}{10}.10-x=10\)

\(9-x=10\)

\(x=9-10\)

\(x=-1\)

~ Hok tốt ~

6 tháng 8 2018

So sánh à bạn?

6 tháng 8 2018

A=\(\frac{1}{2}\).\(\frac{2}{3}\)....\(\frac{2012}{2013}\)=\(\frac{1}{2013}\)

B=\(\frac{2012}{2012.2013}\)=\(\frac{1}{2013}\)

vậy A=B

17 tháng 8 2016

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}\)

\(=1-\frac{1}{6}\)

\(=\frac{5}{6}\)

♥ ☼ ↕ ✿ ⊰ ⊱ ✪ ✣ ✤ ✥ ✦ ✧ ✩ ✫ ✬ ✭ ✯ ✰ ✱ ✲ ✳ ❃ ❂ ❁ ❀ ✿ ✶ ✴ ❄ ❉ ❋ ❖ ⊹⊱✿ ✿⊰⊹ ♧ ✿ 

\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}=\)

\(\frac{1}{1}-\frac{1}{6}=\frac{5}{6}\)

29 tháng 3 2016

\(\Rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\left(1:a+2a+...+10a\right)=\frac{49}{100}\)

\(\Rightarrow1-10a=\frac{49}{100}\)

\(\Rightarrow10a=1-\frac{49}{100}\)

10a=0,51

a=\(\frac{0,51}{10}=0,051\)

29 tháng 3 2016

mk không biết có đúng không nữa thông cảm (mk chưa gặp dạng toán này ; chổ 1:... = 1 nha thay vào luôn) còn chổ ( a+2a+...10a là vd)

1 tháng 7 2018

a) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.......+\frac{1}{2017.2018}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-..........-\frac{1}{2018}\)

\(=1-\frac{1}{2018}\)

\(=\frac{2018}{2018}-\frac{1}{2018}=\frac{2017}{2018}\)

b) \(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+..........+\frac{2}{2017.2018}+\frac{2}{2018.2019}\)

\(=2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.........+\frac{1}{2017.2018}+\frac{1}{2018.2019}\right)\)

\(=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-.........-\frac{1}{2018}+\frac{1}{2018}-\frac{1}{2019}\right)\)

\(=2\left(1-\frac{1}{2019}\right)\)

\(=2\left(\frac{2019}{2019}-\frac{1}{2019}\right)\)

\(=2.\frac{2018}{2019}\)

\(=\frac{4036}{2019}\)

Phần c tương tự nha

1 tháng 7 2018

a) \(\frac{1}{1.2}\) +  \(\frac{1}{2.3}\) + .......+  \(\frac{1}{2017.2018}\)

= 1 -  \(\frac{1}{2}\) + \(\frac{1}{2}\) -  \(\frac{1}{3}\) + .......+  \(\frac{1}{2017}\) -   \(\frac{1}{2018}\)

= 1 -  \(\frac{1}{2018}\) =  \(\frac{2017}{2018}\)

câu a) mik sửa đề một tí ko biết có đúng ko

câu b , c tương tự nhưng cần lấy tử ra chung 

20 tháng 6 2019

#)Giải :

Đặt \(A=4-\frac{2}{1.2}-\frac{2}{2.3}-\frac{2}{3.4}-...-\frac{2}{99.100}\)

\(A=4-\left(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{99.100}\right)\)

\(A=4-2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)

\(A=4-2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(A=4-2\left(1-\frac{1}{100}\right)\)

\(A=4-2\times\frac{99}{100}\)

\(A=4-\frac{99}{50}\)

\(A=\frac{101}{50}\)

27 tháng 4 2019

\(B=4.\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{29.30}\right)\)

\(B=4.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{29}-\frac{1}{30}\right)\)

\(B=4.\left(1-\frac{1}{30}\right)\)

\(B=4.\frac{29}{30}\)

\(B=\frac{58}{15}\)

27 tháng 4 2019

\(B=4\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{29}-\frac{1}{30}\right)\) 

\(=4\left(1-\frac{1}{30}\right)\) 

\(=4.\frac{29}{30}=\frac{58}{15}\) 

Vậy B= \(\frac{58}{15}\)

29 tháng 8 2020

Ta có : 

\(A=\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{9.9}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{8.9}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}\)

\(=1-\frac{1}{9}=\frac{8}{9}\Rightarrow A< \frac{8}{9}\)(1)

Lại có \(A=\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{9.9}>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9.10}=\frac{1}{2}-\frac{1}{10}=\frac{4}{10}=\frac{2}{5}\Rightarrow A>\frac{2}{5}\)(2)

Từ (1) (2) => \(\frac{2}{5}< A< \frac{8}{9}\left(\text{ĐPCM}\right)\)

29 tháng 8 2020

                         Bài làm :

Ta có :

\(A=\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{9.9}>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)

\(A>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)

\(A>\frac{1}{2}-\frac{1}{10}\)

\(A>\frac{2}{5}\left(1\right)\)

Ta cũng có  : 

\( A=\frac{1}{2.2}+\frac{1}{3.3}+......+\frac{1}{9.9}< \frac{1}{1.2}+\frac{1}{2.3}+......+\frac{1}{8.9}\)

\(A< 1-\frac{1}{2}+\frac{1}{2}-......+\frac{1}{8}-\frac{1}{9}\)

\(A< 1-\frac{1}{9}\)

\(A< \frac{8}{9}\left(2\right)\)

\(\text{Từ (1) và (2) }\Rightarrow\frac{2}{5}< A< \frac{8}{9}\)

=> Điều phải chứng minh

Chúc bạn học tốt !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!