Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, A = x2 + 6x + 13
=(x2+6x+9)+4
=(x+3)2+4\(\ge\)4
Dấu "=" xảy ra khi x=-3
\(A=x^2+6x+13\)
<=>\(A=x^2+6x+9+4\)
<=>\(A=\left(x+3\right)^2+4\ge4\)
Dấu "=" xảy ra <=> x+3=0 <=> x=-3
Vậy minA=4 <=> x=-3
\(B=4x^2+3x+11\)
<=>\(B=4\left(x^2+\frac{3}{4}x-\frac{11}{4}\right)\)
<=>\(B=4\left(x^2+\frac{3}{4}x+\frac{3}{8}\right)-\frac{185}{16}\)
<=>\(B=4\left(x+\frac{3}{8}\right)^2-\frac{185}{16}\ge-\frac{185}{16}\)
Dấu "=" xảy ra <=> x+3/8=0 <=> x=-3/8
Vậy minB=-185/16 <=> x=-3/8
\(C=5x^2-x+34\)
<=>\(C=5\left(x^2-\frac{1}{5}x+\frac{34}{5}\right)\)
<=>\(C=5\left(x^2-\frac{1}{5}x+\frac{1}{100}\right)+\frac{679}{20}\)
<=>\(C=\left(x-\frac{1}{10}\right)^2+\frac{679}{20}\ge\frac{679}{20}\)
Dấu "=" xảy ra <=> x-1/10=0 <=> x=1/10
Vậy minC= 679/20 <=> x=1/10
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
\(\left(x+6\right)\left(2x+1\right)=0\)
<=> \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)
Vậy....
hk tốt
^^
\(A=x^2-6x+10\)
\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)
\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\) \(\forall x\in z\)
\(\Leftrightarrow A_{min}=1khix=3\)
\(B=3x^2-12x+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\) \(\forall x\in z\)
\(\Leftrightarrow B_{min}=-11khix=2\)
Rút gọn hết ta được :
a/ 41x - 17 = -21
=> 41x = -4 => x = 4/41
b/ 34x - 17 = 0
=> 34x = 17
=> x = 17/34 = 1/2
c/ 19x + 56 = 52
=> 19x = -4
=> x = -4/19
d/ 20x2 - 16x - 34 = 10x2 + 3x - 34
=> 10x2 - 19x = 0
=> x(10x - 19) = 0
=> x = 0
hoặc 10x - 19 = 0 => 10x = 19 => x = 19/10
Vậy x = 0 ; x = 19/10
Rút gọn hết ta được :
a/ 41x - 17 = -21
=> 41x = -4 => x = 4/41
b/ 34x - 17 = 0
=> 34x = 17
=> x = 17/34 = 1/2
c/ 19x + 56 = 52
=> 19x = -4
=> x = -4/19
d/ 20x 2 - 16x - 34 = 10x 2 + 3x - 34
=> 10x 2 - 19x = 0
=> x(10x - 19) = 0
=> x = 0 hoặc 10x - 19 = 0
=> 10x = 19
=> x = 19/10
Vậy x = 0 ; x = 19/10
Lời giải:
a. ĐKXĐ: $x\neq \pm 2; x\neq 0; x\neq 3$
b.
\(S=\left[\frac{-(x+2)^2}{(x-2)(x+2)}+\frac{4x^2}{(x-2)(x+2)}+\frac{(x-2)^2}{(x+2)(x-2)}\right]:\frac{x(x-3)}{x^2(2-x)}\\ =\frac{-(x+2)^2+4x^2+(x-2)^2}{(x-2)(x+2)}:\frac{x-3}{x(2-x)}\\ =\frac{4x^2-8x}{(x-2)(x+2)}.\frac{x(2-x)}{x-3}\\ =\frac{4x(x-2)}{(x-2)(x+2)}.\frac{-x(x-2)}{x-3}=\frac{-4x^2(x-2)}{(x+2)(x-3)}\)
c.
$|x-5|=2\Rightarrow x-5=2$ hoặc $x-5=-2$
$\Rightarrow x=7$ hoặc $x=3$. Mà theo ĐKXĐ thì $x\neq 3$ nên $x=7$
$S=\frac{-4.7^2(7-2)}{(7+2)(7-3)}=\frac{-245}{9}$