(x - 1)(x2
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2023

\(\left(x-1\right)\left(x^2-3x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1\text{=}0\\x^2-3x+2\text{=}0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x\text{=}1\\x^2-3x+2\text{=}0\left(1\right)\end{matrix}\right.\)

Giải pt (1) ta có :

\(\left(1\right)\Leftrightarrow x^2-x-2x+2\text{=}0\)

\(\Leftrightarrow x\left(x-1\right)-2\left(x-1\right)\text{=}0\)

\(\Leftrightarrow\left(x-2\right)\left(x-1\right)\text{=}0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2\text{=}0\\x-1\text{=}0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\text{=}2\\x\text{=}1\end{matrix}\right.\)

Vậy.....

5 tháng 9 2023

giup minh voi

 

11 tháng 6 2018

Bài 1:

Đặt biểu thức trên là A

Ta có:\(A=\left(x-2\right)\left(x+1\right)-\left(x+2\right)\left(x-3\right)=x^2-x-2-\left(x^2-x-6\right)\)

                                                                                      \(=x^2-x-2-x^2+x+6=4\)

Vậy biểu thức A không phụ thuộc vào biến x (đpcm)

Bài 2:

a)\(\left(x-5\right)\left(x+2\right)+\left(x+1\right)\left(2-x\right)=15\)

\(\Leftrightarrow x^2-3x-10+x-x^2+2=15\)

\(\Leftrightarrow-2x-8=15\)

\(\Leftrightarrow-2x=23\)\(\Leftrightarrow x=\frac{-23}{2}\)

Vậy...................................................................................

câu b) tương tự câu a) thôi,bạn tự làm đi nhé

24 tháng 3 2020

dài lắm nên mình làm tắt

1) (x - 5)^2 + (x + 3)^2 = 2(x - 4)(x + 4) - 5x + 7

<=> x^2 - 10x + 25 + x^2 + 6x + 9 = 2x^2 + 8x - 8x - 32 - 5x + 7

<=> 2x^2 - 4x + 34 = 2x^2 - 5x - 25

<=> -4x + 34 = -5x - 25

<=> x + 34 = -25

<=> x = -25 - 34

<=> x = - 59

2) (x + 3)(x - 2) - 2(x + 1)^2 = (x - 3)^2 - 2x^2 + 4x

<=> x^2 - 2x + 3x - 6 - 2x^2 - 4x - 2 = x^2 - 6x + 9 - 2x^2 + 4x

<=> -x^2 - 3x - 8 = -x^2 - 2x + 9

<=> -3x - 8 = -2x + 9

<=> -x - 8 = 9

<=> -x = 9 + 8

<=> x = -17

3) (x + 1)^3 - (x + 2)(x - 4) = (x - 2)(x^2 + 2x + 4) + 2x^2

<=> x^3 + 2x^3 + x + x^2 + 2x + 1 - x^2 + 4x - 2x + 8 = x^3 + 2x^2 + 4x - 2x^2 - 4x - 8 + 2x^2

<=> 2x^2 + 5x + 9 = 2x^2 - 8

<=> 5x + 9 = -8

<=> 5x = -8 - 9

<=> 5x = -17

<=> x = -17/5

4) (x - 2)^3 + (x - 5)(x + 5) = x(x^2 - 5x) - 7x + 3

<=> x^3 - 4x^2 + 4x - 2x^2 + 8x - 8 + x^2 - 5^2 = x^3 - 5x^2 - 7x + 3

<=> 12x - 33 = -7x + 3

<=> 19x - 33 = 3

<=> 19x = 3 + 33

<=> 19x = 36

<=> x = 36/19

5) (x + 4)(x^2 - 4x + 16) - x(x - 4)^2 = 8(x - 3)(x + 3)

<=> x^3 - 4x^2 + 16x + 4x^2 - 16x + 64 - x^3 + 8x^2 - 16x = 8x^2 - 72

<=> -16x + 64 = -72

<=> -16x = -72 - 64

<=> -16x = -136

<=> x = 136/16 = 17/2

6) 4(x - 1)(x + 2) - 5(x + 7) = (2x + 3)^2 - 5x + 3

<=> 4x^2 + 8x - 4x - 8 - 5x - 35 = 4x^2 + 12x + 9 - 5x + 3

<=> -x - 43 = 7x + 12

<=> -8x - 43 = 12

<=> -8x = 12 + 43

<=> -8x = 55

<=> x = -55/8

7) (x - 1)(x^2 + x + 1) + 3(x - 2)^2 = x(x^2 + 3x - 1)

<=> x^3 + x^2 + x - x^2 - x - 1 + 3x^2 - 12x + 12 = x^3 + 3x^2 - x

<=> 3x^2 - 12x + 11 = 3x^2 - x

<=> -12x + 11 = -x

<=> 11 = -x + 12x

<=> 11 = 11x

<=> x = 1

8) (x + 5)(x - 5) - (x + 3)(x^2 - 3x + 9) = 5 - x(x^2 - x - 2)

<=> x^2 - 25 - x^3 + 3x^2 - 9 - 3x^2 + 9x - 27 = 5 - x^3 + x^2 + 2x

<=> -52 - x^3 = 5 - x^3 + 2x

<=> -52 = 5x + 2x

<=> -5x - 2x = 52

<=> -7x = 52

<=> x = -52/7

9) (x + 2)^2 - 2(x + 3)(x - 4) = 5 - x(x - 3)

<=> x^2 + 4x + 4 - 2x^2 + 8x - 6x + 24 = 5 - x^3 + 3x

<=> 6x + 28 = 5 + 3x

<=> 6x + 28 - 3x = 5

<=> 3x + 28 = 5

<=> 3x = 5 - 28

<=> 3x = -23

<=> x = -23/3

10)  (x + 7)(x - 7) - (x + 2)^2 = 5(x - 2) + (x - 7)

<=> x^2 - 49 - x^2 - 4x - 4 = 5x - 10 + x - 7

<=> -53 - 4x = 6x - 17

<=> -4x = 6x + 36

<=> -4x - 6x = 36

<=> -10x = 36

<=> x = -36/10 = -18/5

a: Xét tứ giác AEDF có \(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)

nên AEDF là hình chữ nhật

b: Ta có: D và M đối xứng nhau qua AB

nên AB là đường trung trực của DM

=>AB vuông góc với DM tại trung điểm của DM

hay E là trung điểm của DM

Ta có: D và N đối xứng nhau qua AC

nên AClà đường trung trực của DN

=>AC vuông góc với DN tại trung điểm của DN

hay F là trung điểm của DN

Xét ΔABC có 

D là trung điểm của BC

DE//AC

DO đó: E là trung điểm của AB

Xét ΔABC có

D là trung điểm của BC

DF//AB

Do đó: F là trung điểm của CA

Xét tứ giác ADBM có 

E là trung điểm của AB

E là trung điểm của DM

Do đó: ADBM là hình bình hành

mà DA=DB

nên ADBM là hình thoi

Xét tứ giác ADCN có 

F là trung điểm của AC

F là trung điểm của DN

Do đó: ADCN là hình bình hành

mà DA=DC

nên ADCN là hình thoi

15 tháng 8 2019

a,

Ta có: \(a\left(b+1\right)b\left(a+1\right)=\left(a+1\right)\left(b+1\right)\)

\(\Rightarrow ab=\left(a+1\right)\left(b+1\right):\left(a+1\right)\left(b+1\right)=1\)

=>đpcm

b,

Ta có: \(2\left(a+1\right)\left(a+b\right)=\left(a+b\right)\left(a+b+2\right)\)

\(\Rightarrow2a+2=a+b+2\)

\(\Rightarrow a-b=0\)

\(\Rightarrow a^2+b^2=2ab\)

\(\Rightarrow a^2+b^2=2\) (đpcm)

30 tháng 7 2016

bn viết đề hẳn hoi đi khó nhìn quá

18 tháng 6 2019

a) \(\left(3x-5\right)\left(7-5x\right)-\left(5x+2\right)\left(2-3x\right)=4\)

\(\Leftrightarrow-15x^2+46x-35+15x^2-4x-4=4\)

\(\Leftrightarrow42x-39=4\)

\(\Leftrightarrow42x=4+39\)

\(\Leftrightarrow42x=43\)

\(\Leftrightarrow x=\frac{43}{42}\)

\(\Rightarrow x=\frac{43}{42}\)

b) \(\left(x+2\right)\left(x^2-2x+4\right)-\left(x^3+3\right)x=14\)

\(\Leftrightarrow x^3+8-x^4-3x=14\)

\(\Leftrightarrow x^3+8-x^4-3x=14-14\)

\(\Leftrightarrow-x^4+x^3-3x-6=0\)

=> x k có gt thỏa mãn