Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
<=>x^2-y^2+x^2-xy=8
<=>(x-y)(2x+y)=8
2x+y>x-y
tự xét tiếp
lớp 9 kém thế
a) \(\frac{1}{x}+\frac{1}{y}=2\Leftrightarrow\frac{x+y}{xy}=2\)
\(\Leftrightarrow x+y=2xy\Leftrightarrow4xy=2x+2y\)
\(\Leftrightarrow4xy-2x-2y=0\Leftrightarrow2x\left(2y-1\right)-\left(2y-1\right)=1\)
\(\Leftrightarrow\left(2x-1\right)\left(2y-1\right)=1=1.1=\left(-1\right).\left(-1\right)\)
\(TH1:\hept{\begin{cases}2x-1=1\\2y-1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)
\(TH1:\hept{\begin{cases}2x-1=-1\\2y-1=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=0\end{cases}}\left(L\right)\)
Vậy x = y = 1
b) A là số chính phương nên ta đặt \(n^2+2n+8=a^2\)
\(\Leftrightarrow\left(n+1\right)^2+7=a^2\)
\(\Leftrightarrow a^2-\left(n+1\right)^2=7\)
\(\Leftrightarrow\left(a-n-1\right)\left(a+n+1\right)=7=1.7=7.1\)
\(=\left(-1\right).\left(-7\right)=\left(-7\right).\left(-1\right)\)
Lập bảng:
\(a-n-1\) | \(1\) | \(7\) | \(-1\) | \(-7\) |
\(a+n+1\) | \(7\) | \(1\) | \(-7\) | \(-1\) |
\(a-n\) | \(2\) | \(8\) | \(0\) | \(-6\) |
\(a+n\) | \(6\) | \(0\) | \(-8\) | \(-2\) |
\(a\) | \(4\) | \(4\) | \(-4\) | \(-4\) |
\(n\) | \(2\) | \(-4\) | \(-4\) | \(2\) |
Mà n là số tự nhiên nên n = 2.
\(y^2=\left(x-y\right)\left(1-x\right)\)
1-x | 1 | -1 | y;-y |
x-y | x-y=y2 | x-y=-y2 | y;-y |
x | 0 | 2 | 2/3;0 |
y | 0;-1 | // | 1/3;-1 |
Vậy ( x;y) = ( 0;0) ; ( 0; -1) ;
Với \(x=0\) thì pt thành \(y^2=66\), vô lí.
Với \(x\ge1\) thì ta thấy \(y\) lẻ.
pt \(\Leftrightarrow2^x+64=y^2-1\)
\(\Leftrightarrow2^x+64=\left(y-1\right)\left(y+1\right)\) (*)
Đặt \(y=2z+1\left(z\inℕ\right)\). Khi đó
(*) \(\Leftrightarrow2^x+64=2z\left(2z+2\right)\)
\(\Leftrightarrow2^{x-2}+16=z\left(z+1\right)\) (1)
Nếu \(x=2\) thì VT lẻ, VP chẵn, vô lý.
Nếu \(x=6\) thì (1) thành \(32=z\left(z+1\right)\), vô lý.
Nếu \(x\ge7\) thì (1) thành \(2^4\left(2^{x-6}+1\right)=z\left(z+1\right)\)
Bởi \(gcd\left(2^4,2^{x-6}+1\right)=gcd\left(z,z+1\right)=1\) nên từ đây
\(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}z⋮16\\z\equiv-1\left[16\right]\end{matrix}\right.\\\left[{}\begin{matrix}16⋮z\\2^{x-6}+1⋮z\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}z=16\\\left\{{}\begin{matrix}z+1⋮16\\z^{x-6}+1⋮z\end{matrix}\right.\end{matrix}\right.\)
TH1: \(z=16\Rightarrow2^{x-6}=2^4\Leftrightarrow x=10\Leftrightarrow y=33\)
TH2: \(\left\{{}\begin{matrix}z+1⋮16\\2^{x-6}+1⋮z\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}z\equiv-1\left[16\right]\\2^{x-6}+1⋮z\end{matrix}\right.\). Lại có \(16\left(2^{x-6}+1\right)⋮z+1\)
và \(\left(2^{x-6}+1\right)< z\left(z+1\right)\), đồng thời để ý rằng \(gcd\left(z,z+1\right)=1\) nên từ đó suy ra \(16⋮z+1\) (vì nếu không thì \(2^{x-6}+1⋮x\left(x+1\right)\), vô lí vì \(2^{x-6}+1< x\left(x+1\right)\))
\(z+1=16\Rightarrow z=15\) \(\Rightarrow2^{x-6}+1=15\), vô lý.
Nếu \(x\le5\) thì \(x\in\left\{3,4,5\right\}\). Thử lại, ta thấy \(x=4\) thỏa mãn \(\Rightarrow y=9\)
Do đó pt đã cho có các nghiệm tự nhiên là \(\left(4,9\right),\left(10,33\right)\)