TÌm nghiệm tự nhiên của phương trình: 2^x+65=y^2

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2024

Với \(x=0\) thì pt thành \(y^2=66\), vô lí.

Với \(x\ge1\) thì ta thấy \(y\) lẻ.

pt \(\Leftrightarrow2^x+64=y^2-1\) 

\(\Leftrightarrow2^x+64=\left(y-1\right)\left(y+1\right)\) (*)

Đặt \(y=2z+1\left(z\inℕ\right)\). Khi đó 

(*) \(\Leftrightarrow2^x+64=2z\left(2z+2\right)\)

\(\Leftrightarrow2^{x-2}+16=z\left(z+1\right)\)    (1)

Nếu \(x=2\) thì VT lẻ, VP chẵn, vô lý.

Nếu \(x=6\) thì (1) thành \(32=z\left(z+1\right)\), vô lý.

Nếu \(x\ge7\) thì (1) thành \(2^4\left(2^{x-6}+1\right)=z\left(z+1\right)\) 

Bởi \(gcd\left(2^4,2^{x-6}+1\right)=gcd\left(z,z+1\right)=1\) nên từ đây

\(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}z⋮16\\z\equiv-1\left[16\right]\end{matrix}\right.\\\left[{}\begin{matrix}16⋮z\\2^{x-6}+1⋮z\end{matrix}\right.\end{matrix}\right.\)  \(\Rightarrow\left[{}\begin{matrix}z=16\\\left\{{}\begin{matrix}z+1⋮16\\z^{x-6}+1⋮z\end{matrix}\right.\end{matrix}\right.\)

TH1: \(z=16\Rightarrow2^{x-6}=2^4\Leftrightarrow x=10\Leftrightarrow y=33\)

TH2: \(\left\{{}\begin{matrix}z+1⋮16\\2^{x-6}+1⋮z\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}z\equiv-1\left[16\right]\\2^{x-6}+1⋮z\end{matrix}\right.\). Lại có \(16\left(2^{x-6}+1\right)⋮z+1\)

và \(\left(2^{x-6}+1\right)< z\left(z+1\right)\), đồng thời để ý rằng \(gcd\left(z,z+1\right)=1\) nên từ đó suy ra \(16⋮z+1\) (vì nếu không thì \(2^{x-6}+1⋮x\left(x+1\right)\), vô lí vì \(2^{x-6}+1< x\left(x+1\right)\))

 \(z+1=16\Rightarrow z=15\) \(\Rightarrow2^{x-6}+1=15\), vô lý.

 Nếu \(x\le5\) thì \(x\in\left\{3,4,5\right\}\). Thử lại, ta thấy \(x=4\) thỏa mãn \(\Rightarrow y=9\)

 Do đó pt đã cho có các nghiệm tự nhiên là \(\left(4,9\right),\left(10,33\right)\)

 

 

24 tháng 8 2019

giúp mình làm bài này với:tìm x

a,x+4=2mu0+1mu2019

b,1+1/3+1/6+1/10+....+1/x nhan (x+1):2

SO SÁNH

A=2011mu2010+1/2011mu2011+1 và B=2011mu2011+1/2011mu2012+1

5 tháng 10 2019

<=>x^2-y^2+x^2-xy=8

<=>(x-y)(2x+y)=8

2x+y>x-y

tự xét tiếp

lớp 9 kém thế

8 tháng 9 2019

a) \(\frac{1}{x}+\frac{1}{y}=2\Leftrightarrow\frac{x+y}{xy}=2\)

\(\Leftrightarrow x+y=2xy\Leftrightarrow4xy=2x+2y\)

\(\Leftrightarrow4xy-2x-2y=0\Leftrightarrow2x\left(2y-1\right)-\left(2y-1\right)=1\)

\(\Leftrightarrow\left(2x-1\right)\left(2y-1\right)=1=1.1=\left(-1\right).\left(-1\right)\)

\(TH1:\hept{\begin{cases}2x-1=1\\2y-1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)

\(TH1:\hept{\begin{cases}2x-1=-1\\2y-1=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=0\end{cases}}\left(L\right)\)

Vậy x = y = 1

b) A là số chính phương nên ta đặt \(n^2+2n+8=a^2\)

\(\Leftrightarrow\left(n+1\right)^2+7=a^2\)

\(\Leftrightarrow a^2-\left(n+1\right)^2=7\)

\(\Leftrightarrow\left(a-n-1\right)\left(a+n+1\right)=7=1.7=7.1\)

\(=\left(-1\right).\left(-7\right)=\left(-7\right).\left(-1\right)\)

Lập bảng:

\(a-n-1\)\(1\)\(7\)\(-1\)\(-7\)
\(a+n+1\)\(7\)\(1\)\(-7\)\(-1\)
\(a-n\)\(2\)\(8\)\(0\)\(-6\)
\(a+n\)\(6\)\(0\)\(-8\)\(-2\)
\(a\)\(4\)\(4\)\(-4\)\(-4\)
\(n\)\(2\)\(-4\)\(-4\)\(2\)

Mà n là số tự nhiên nên n = 2.

11 tháng 1 2016

\(y^2=\left(x-y\right)\left(1-x\right)\)

1-x1-1y;-y
x-yx-y=y2x-y=-y2y;-y
x022/3;0
y0;-1//1/3;-1

Vậy ( x;y) = ( 0;0) ; ( 0; -1) ;