Cho tam giác ABC cân tại A, tia phân giác của góc A cắt BC tại H. Gọi K, M lần
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2023

loading... a) Do AH là tia phân giác của ∠BAC (gt)

⇒ ∠KAH = ∠MAH

Xét hai tam giác vuông: ∆KAH và ∆MAH có:

AH là cạnh chung

∠KAH = ∠MAH (cmt)

⇒ ∆KAH = ∆MAH (cạnh huyền - góc nhọn)

b) Do ∆KAH = ∆MAH (cmt)

⇒ AK = AM (hai cạnh tương ứng)

∆AKM có:

AK = AM (cmt)

⇒ ∆AKM cân tại A

⇒ ∠AKM = ∠AMK = (180⁰ - ∠KAM) : 2

= (180⁰ - ∠BAC) : 2 (1)

∆ABC cân tại A (gt)

⇒ ∠ABC = ∠ACB = (180⁰ - ∠BAC) : 2 (2)

Từ (1) và (2) ⇒ ∠AKM = ∠ABC

Mà ∠AKM và ∠ABC là hai góc đồng vị

⇒ KM // BC

3 tháng 3 2018

câu này mình vừa làm ở bạn Khang Phạm Duy , HÂN nhé

tham khảo .mình giải rất chi tiết 

3 tháng 3 2018

D E F N M I

a) Xét \(\Delta DEM\)và \(\Delta DFN\)

\(\widehat{D}\)chung

DM=DN

DF=DE

\(\Rightarrow\Delta DEM=\Delta DFN\left(c.g.c\right)\)

\(\Rightarrow\widehat{DEM}=\widehat{DFN}\)(2 góc tương ứng)

b,c dễ bn tự làm

8 tháng 1 2018

B C A M N H K O

a) Tam giác ABC cân tại A nên AB = AC và \(\widehat{ABC}=\widehat{ACB}\)

\(\Rightarrow\widehat{ABM}=\widehat{ACN}\)

Xét tam giác ABM và tam giác ACN có:

AB = AC

MB = NC

\(\widehat{ABM}=\widehat{ACN}\)

\(\Rightarrow\Delta ABM=\Delta ACN\left(c-g-c\right)\)

b) Do \(\Delta ABM=\Delta ACN\Rightarrow\widehat{BAH}=\widehat{CAK}\)  (Hai góc tương ứng)

Xét tam giác vuông AHB và AKC có:

AB = AC (gt)

\(\widehat{BAH}=\widehat{CAK}\)

\(\Rightarrow\Delta AHB=\Delta AKC\)   (Cạnh huyền - góc nhọn)

\(\Rightarrow AH=AK\)

c) Ta có \(\Delta AHB=\Delta AKC\Rightarrow HB=KC\)

Xét tam giác vuông AHO và AKO có:

AH = AK

AO chung

\(\Rightarrow\Delta AHO=\Delta AKO\)   (Cạnh huyền - cạnh góc vuông)

\(\Rightarrow HO=KO\)

Mà HB = CK nên OB = OH - HB = OK - CK = OC

Vậy nên tam giác OBC cân tại O.