cho Δ ABC vuông tại A , đường cao AH , AB = 4cm , BC = 8cm . Gọi E , F lần lượt là...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2023

a) Ta có : 

\(BC^2=AB^2+AC^2\left(Pitago\right)\)

\(\Leftrightarrow AC^2=BC^2-AB^2=169-25=144\)

\(\Leftrightarrow AC=12\left(cm\right)\)

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

\(\Leftrightarrow\dfrac{1}{AH^2}=\dfrac{AB^2.+AC^2}{AB^2.AC^2}\)

\(\Leftrightarrow\dfrac{1}{AH^2}=\dfrac{BC^2}{\left(AB.AC\right)^2}\)

\(\Leftrightarrow AH^2=\dfrac{\left(AB.AC\right)^2}{BC^2}=\dfrac{\left(5.12\right)^2}{13^2}\)

\(\Leftrightarrow AH=\dfrac{5.12}{13}=\dfrac{60}{13}\sim4,85\left(cm\right)\)

\(sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{12}{13}\Rightarrow\widehat{B}\sim67^o\)

19 tháng 9 2023

loading... a) ∆ABC vuông tại A (gt)

BC² = AB² + AC² (Pytago)A

⇒ AC² = BC² - AB²

= 13² - 5²

= 144

⇒ AC = 12 (cm)

Ta có:

AH.BC = AB.AC

⇒ AH = AB.AC : BC

= 5.12 : 13

= 60/13 (cm) ≈ 4,62 (cm)

sinB = AC/BC = 12/13

⇒ ∠B ≈ 67⁰

b) ∆AHB vuông tại H có HE là đường cao

⇒ HE² = AE . EB (1)

∆AHC vuông tại H có HF là đường cao

⇒ HF² = AF . FC (2)

Tứ giác AEHF có:

∠AEH = ∠EAF = ∠AFH = 90⁰

⇒ AEHF là hình chữ nhật

⇒ AH = EF

⇒ ∠EHF = 90⁰

∆EHF vuông tại H

⇒ EF² = HE² + HF²

⇒ AH² = HE² + HF²

Từ (1) và (2)

⇒ AE.EB + AF.FC = HE² + HF² = AH²

∆ABC vuông tại A vó AH là đường cao

⇒ AH² = HB.HC

⇒ AE.EB + AF.FC = HB.HC

⇒ AE.EB + AF.FC - HB.HC = 0

c) AH = EF đã chứng minh ở câu b

28 tháng 10 2023

1: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2+9=36\)

=>\(AC^2=27\)

=>\(AC=3\sqrt{3}\left(cm\right)\)

Chu vi tam giác ABC là:

\(3+3\sqrt{3}+6=9+3\sqrt{3}\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot6=3\cdot3\sqrt{3}=9\sqrt{3}\)

=>\(AH=\dfrac{3\sqrt{3}}{2}\left(cm\right)\)

2: 

a: Xét tứ giác AEHF có

\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)

=>AEHF là hình chữ nhật

=>EF=AH

b: Xét ΔHAB vuông tại H có HE là đường cao

nên \(EA\cdot EB=HE^2\)

ΔHAC vuông tại H có HF là đường cao

nên \(FA\cdot FC=HF^2\)

\(EA\cdot EB+FA\cdot FC\)

\(=HE^2+HF^2=EF^2\)

Câu 1: 

a: Xét ΔAHB vuông tạiH có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

b: \(BC=\sqrt{4^2+6^2}=2\sqrt{13}\left(cm\right)\)

\(AH=\dfrac{4\cdot6}{2\sqrt{13}}=\dfrac{12}{\sqrt{13}}\left(cm\right)\)

\(AE=\dfrac{AH^2}{AC}=\dfrac{144}{13}:6=\dfrac{24}{13}\left(cm\right)\)

 

14 tháng 10 2023


                   

14 tháng 10 2023

a.Xét ΔABC vuông tại A có:
    +AB²+AC²=BC²(Pytago)
  ⇔AC²=BC²-AB²
  ⇔AC²=6²-3²=27
  ⇔AC=3√3(cm)
   +sinB=AC/BC(Định nghĩa tỉ số lượng giác)
    ⇔sinB=3√3/6
    ⇒B=60°
   +/B+C=90°
    ⇒C=90°-B=30°
b.Xét ΔABC vuông tại A có:
   AH.BC=AC.AB(Hệ thức về cạnh và góc trong tam giác vuông)
⇔AH=AC.AB/BC
⇔AH=3√3.5/6≈4,33(cm)
   Xét tứ giác AEHF có:
   A=AEH=AFH(=90°)
⇒AEHF là hình chữ nhật(dhnb)
  ⇒EF=AH(tính chất hcn AEHF)
c.Xét ΔABH vuông tại H:
   HE²=EB.EA(Hệ thức về cạnh và góc trong tam giác vuông) (1)
  Xét ΔAHC vuông tại H :
   HF²=AF.FC(Hệ thức về cạnh và góc trong tam giác vuông) (2)
  Vì AEHF là hcn (cmb)
⇒EHF=90°(t/c)
  Xét ΔHEF vuông tại H có:
  HE²+HF²=EF²(pytago) (3)
  Từ (1),(2) và (3)⇒EA.EB+AF.FC=EF²
                            ⇒EA.EB+AF.FC=AH²(AH=EF)
                            ⇒EA.EB+AF.FC≈4,33²≈18,7489

16 tháng 10 2023

a: ΔABC vuông tại A

=>\(BC^2=AB^2+AC^2\)

=>\(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot10=6\cdot8=48\)

=>AH=4,8cm

Xét ΔABC vuông tại A có \(sinACB=\dfrac{AB}{BC}=\dfrac{3}{5}\)

=>\(\widehat{ACB}\simeq36^052'\)

b: ΔHAB vuông tại H có HE là đường cao

nên \(AE\cdot AB=AH^2\left(1\right)\)

ΔHAC vuông tại H có HF là đường cao

nên \(AF\cdot AC=AH^2\left(2\right)\)

Từ (1),(2) suy ra \(AE\cdot AB=AF\cdot AC\)

=>\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

Xét ΔAEF vuông tại A và ΔACB vuông tại A có

\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

Do đó: ΔAEF đồng dạng với ΔACB

=>\(\widehat{AFE}=\widehat{ABC}\)

b: Xét tứ giác ADHE có 

\(\widehat{ADH}=\widehat{AEH}=\widehat{EAD}=90^0\)

Do đó: ADHE là hình chữ nhật

Suy ra: AH=DE

8 tháng 11 2022

Giỏi vậy 

22 tháng 8 2023

Bạn tự vẽ hình.

(a) \(BC^2=AB^2+AC^2\left(Pythagoras\right)\)

\(\Rightarrow AC=\sqrt{BC^2-AB^2}=\sqrt{5^2-3^2}=4\left(cm\right)\)

+) \(sinB=\dfrac{AC}{BC}=\dfrac{4}{5}\Rightarrow\hat{B}\approx53^o\)

+) \(\hat{C}=90^o-\hat{B}\approx90^o-53^o=37^o\)

(b) +) \(AB.AC=BC.AH\Leftrightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{3\cdot4}{5}=2,4\left(cm\right)\)

\(\hat{A}=\hat{E}=\hat{F}=90^o\left(gt\right)\Rightarrow AEHF\) là hình chữ nhật.

Do đó, \(EF=AH\left(đpcm\right)\)

22 tháng 8 2023

ok bn