Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}=>\frac{ab}{cd}=\frac{a^2}{c^2}=\frac{b^2}{d^2}\)
Áp dụng dãy tỉ số = nhau ta có : \(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)
Giải:
Từ \(\frac{ab}{bc}=\frac{b}{c}\left(c\ne0\right)\Rightarrow\frac{ab}{b}=\frac{bc}{c}\left(a,b,c>0\right)\Rightarrow\frac{a}{b}=\frac{b}{c}\)
Tỉ lệ thức \(\frac{a}{b}=\frac{b}{c}\)hay \(ac=b^2\). Ta có: \(\left(a^2+b^2\right)c=\left(a^2+ac\right)=a^2c+ac^2\)
Tương tự có: \(\left(b^2+c^2\right)a=a^2c+ac^2\)
\(\Rightarrow\left(a^2+b^2\right)c=\left(b^2+c^2\right)a\)hay \(\frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}\)
1) Áp dụng tính chất của dãy tỉ số = nhau ta có:
ab/bc=b/c=ab−b/bc−c=(10a+b)−b/(10b+c)−c=10a/10b=a/b
⇒a^2/b^2=b^2/c^2=ab/bc=a/c(1)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
a^2/b^2=2=b^2/c^2=a^2+b^2/b^2+c^2(2)
Từ (1) và (2) ⇒a^2+b^2/b^2+c^2=a/c(đpcm)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
\(\Rightarrow\frac{a^2+c^2}{b^2+d^2}=\frac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\frac{\left(b^2.k^2\right)+\left(d^2.k^2\right)}{b^2+d^2}\)
\(=\frac{k^2.\left(b^2+d^2\right)}{b^2+d^2}=k^2\)(1)
và \(\frac{ab}{cd}=\frac{bk.dk}{b.d}=k^2\)(2)
Từ (1) và (2) => \(\frac{a^2+c^2}{b^2+d^2}=\frac{ac}{bd}\)(đpcm)
\(1.\) \(\left(a+2\right)\left(a+3\right)\left(a^2+a+6\right)+4a^2=\left(a^2+5a+6\right)\left(a^2+a+6\right)+4a^2\)
Đặt \(t=a^2+3a+6\) , ta được:
\(\left(t+2a\right)\left(t-2a\right)+4a^2=t^2-4a^2+4a^2=t^2=\left(a^2+3a+6\right)^2\)
a+b=c+d
(a+b)2=(c+d)2
a2+2ab+b2=c2+2cd+d2
ma a2+b2=c2+d2
2ab=2cd nen -2ab=-2cd
a2+b2=c2+d2
a2-2ab+b2=c2-2cd+d2
(a-b)2=(c-d)2
a-b=c-d hoac a-b=d-c
ma a+b=c+d
nen a=c hoac a=d
nen a=c;b=d hoac a=d;b=c
nen a2013=c2013;b2013=d2013 hoac a2013=d2013;b2013=c2013
Vay a2013+b2013=c2013+d2013 trong ca 2 truong hop
QUA DE
Câu 4 :
Ta có : a+b+c=0
=> a+b=-c
Lại có : a3+b3=(a+b)3-3ab(a+b)
=> a3+b3+c3=(a+b)3-3ab(a+b)+c3
=-c3-3ab. (-c)+c3
=3abc
Vậy a3+b3+c3=3abc với a+b+c=0
Có \(\frac{a}{b}=\frac{c}{d}=\frac{a}{c}=\frac{b}{d}\)
Theo tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)
\(=\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\left(\frac{a+b}{c+d}\right)^2\)
\(=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\left(\frac{a+b}{c+d}\right)^2\)
Có \(\frac{a^2}{c^2}=\frac{b^2}{d^2}\)
Theo dãy tính chất tỉ số bằng nhau ta có :
\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\)
Từ (1) và (2) = \(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)