Cho tam giác ABC vuông tại A, đường cao AH chia cạnh huyền BC thành hai đoạn BH, C...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2021

giúp em với ạ.Em cảm ơn nhiềuu

 

b: Ta có: BC=BH+HC

nên BC=4+9

hay BC=13cm

Áp dụng hệ thức lượng trong tam giác vuông vào ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=2\sqrt{13}cm\\AC=3\sqrt{13}cm\end{matrix}\right.\)

Xét ΔBAC vuông tại A có 

\(\sin\widehat{ABC}=\dfrac{AC}{BC}=\dfrac{3\sqrt{13}}{13}\)

\(\cos\widehat{ABC}=\dfrac{AB}{BC}=\dfrac{2\sqrt{13}}{13}\)

\(\tan\widehat{ABC}=\dfrac{AC}{AB}=\dfrac{3}{2}\)

\(\cot\widehat{ABC}=\dfrac{AB}{AC}=\dfrac{2}{3}\)

b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=2\sqrt{13}cm\\AC=3\sqrt{13}cm\end{matrix}\right.\)

Xét ΔBAC vuông tại A có 

\(\sin\widehat{ABC}=\dfrac{AC}{BC}=\dfrac{3\sqrt{13}}{13}\)

\(\cos\widehat{ABC}=\dfrac{AB}{BC}=\dfrac{2\sqrt{13}}{13}\)

\(\tan\widehat{ABC}=\dfrac{AC}{AB}=\dfrac{3}{2}\)

\(\cot\widehat{ABC}=\dfrac{AB}{AC}=\dfrac{2}{3}\)

1 tháng 9 2021

a, Xét tam giác AHB vuông tại H, đường cao MH 

\(AH^2=AM.AB\)( hệ thức lượng ) (1) 

Xét tam giác AHC vuông tại H, đường cao HN 

\(AH^2=AN.AC\)( hệ thức lượng ) (2) 

Từ (1) ; (2) suy ra : \(AM.AB=AN.AC\)(3) 

b, Xét tam giác AMN và tam giác ACB ta có : 

^A _ chung 

\(\left(3\right)\Rightarrow\frac{AM}{AC}=\frac{AN}{AB}\)

Vậy tam giác AMN ~ tam giác ACB ( c.g.c )

\(\frac{MN}{BC}=\frac{AM}{AC}\)(4) 

Ta có : BC = HB + HC = 9 + 4 = 13 cm 

Xét tam giác ABC vuông tại A, đường cao AH

* Áp dụng hệ thức : \(AC^2=HC.BC=9.13=117\Rightarrow AC=3\sqrt{13}\)cm 

Theo định lí Pytago : \(AB=\sqrt{BC^2-AC^2}=\sqrt{169-\left(3\sqrt{13}\right)^2}=2\sqrt{13}\)cm 

* Áp dụng hệ thức : \(AH.BC=AB.AC\Rightarrow AH=\frac{AB.AC}{BC}=\frac{2\sqrt{13}.3\sqrt{13}}{13}=6\)cm 

lại có : \(AH^2=AM.AB\)cma => \(AM=\frac{36}{2\sqrt{13}}=\frac{18\sqrt{13}}{13}\)cm 

Thay vào (4) ta được : \(\frac{MN}{13}=\frac{\frac{18\sqrt{13}}{13}}{3\sqrt{13}}=6\)cm 

c, Lại có : \(AH^2=AN.AC\)cma => \(AN=\frac{36}{3\sqrt{13}}=\frac{12\sqrt{13}}{13}\)cm 

Ta có : \(S_{AMN}=\frac{1}{2}AN.AM=\frac{1}{2}.\frac{12\sqrt{13}}{13}.\frac{18\sqrt{13}}{13}=\frac{108}{13}\)cm 2

\(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}.2\sqrt{13}.3\sqrt{13}=39\)cm 2

Do \(S_{AMN}+S_{BMNC}=S_{ABC}\Rightarrow S_{BMNC}=S_{ABC}-S_{AMN}\)

\(=39-\frac{108}{13}=\frac{399}{13}\)cm2

15 tháng 1 2017

Tam giác BDH vuông tại D có DM là đường trung tuyến nên:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

20 tháng 3 2021

anh đây đẹp troai, chim dài mét hai !

2 tháng 4 2021

con ciu 5cm im đi

17 tháng 6 2017

search : https://hoc24.vn/hoi-dap/question/56467.html

16 tháng 9 2019

Tứ giác ADHE có 3 góc vuông nên nó là hình chữ nhật

Suy ra: AH = DE (tính chất hình chữ nhật)

Tam giác ABC vuông tại A và có AH là đường cao

Theo hệ thức giữa đường cao và hình chiếu ta có:

A H 2  = HB.HC = 4.9 = 36 ⇒ AH = 6 (cm)

Vậy DE = 6 (cm)

a: Xét ΔAHB vuông tại H có HM là đường cao ứng với cạnh huyền AB

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao ứng với cạnh huyền AC

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

b: Xét tứ giác AMHN có 

\(\widehat{NAM}=\widehat{ANH}=\widehat{AMH}=90^0\)

Do đó: AMHN là hình chữ nhật

Suy ra: AH=NM

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(AH^2=HB\cdot HC\)

hay AH=6(cm)

mà AH=NM

nên MN=6cm