Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) = x^2 - 2x + 1 + 4y^2 + 4y + 1
= ( x - 1 )^2 + ( 2y + 1 )^2
b) = 4x^2 + 4x +1 + 4y^2 + 4y + 1
= ( 2x + 1 )^2 + ( 2y + 1 )^2
c) = 9x^2 - 12x + 4 + 16y^2 - 24y + 9
=( 3x - 2 )^2 + ( 4y - 3 )^2
d) = 4x^2 + 4xy+ y^2 + x^2 - 2xz + z^2
= ( 2x + y )^2 + ( x - z )^2
1) a thỏa mãn: a2 + a + 1 = 0, rõ ràng a khác 0. Chia cả 2 vế cho a ta được: \(a+\frac{1}{a}=-1\)
- Mặt khác ta có: \(\left(a+\frac{1}{a}\right)^3=-1\Rightarrow a^3+3\cdot\left(a+\frac{1}{a}\right)+\frac{1}{a^3}=-1\Rightarrow a^3+\frac{1}{a^3}=2\)
- \(\Rightarrow\left(a^3+\frac{1}{a^3}\right)^2=4\Rightarrow a^6+\frac{1}{a^6}=2\)\(\Rightarrow\left(a^6+\frac{1}{a^6}\right)\left(a^3+\frac{1}{a^3}\right)=4\Rightarrow a^9+\frac{1}{a^9}+a^3+\frac{1}{a^3}=4\Rightarrow a^9+\frac{1}{a^9}=2\)
- ... \(\Rightarrow a^{3k}+\frac{1}{a^{3k}}=2\)
- \(\Rightarrow a^{2013}+\frac{1}{a^{2013}}=2\)
2) Từ: \(x^2+x^2y^2-2y=0\Rightarrow x^2\left(y^2+1\right)=2y\Rightarrow x^2=\frac{2y}{y^2+1}\)
Với mọi y thì: \(\left(y-1\right)^2\ge0\Leftrightarrow2y\le y^2+1\Leftrightarrow\frac{2y}{y^2+1}\le1\)Do đó \(x^2=\frac{2y}{y^2+1}\le1\Rightarrow-1\le x\le1\)(1)
Mặt khác: \(x^3+2y^2-4y+3=0\Leftrightarrow x^3+1+2\left(y-1\right)^2=0\)(2)
Từ (1) => \(x^3+1\ge0\forall x\Rightarrow VT\left(2\right)\ge VP\left(2\right)\forall x;y\)
Để TM (2) thì dấu "=" xảy ra, khi đó x = -1; y = 1
và suy ra \(Q=x^2+y^2=2\)
A=(x^2+4xy+4y^2)-(2x+4y)+10
A=(x+2y)^2-2(x+2y)+1+9
A=(x+2y-1)^2+9
A=(5-1)^2+9=16+9=25
bài 1: <=> 3x2+3x-2x2-2x+x+1=0 <=> x2+2x+1=0 <=>(x+1)2=0<=>x=-1
bài 2: =(x-3)2+1
vì (x-3)2>=0 với mọi x nên (x-3)2+1>=1 => GTNN của x2-6x+10 là 1 khi x=3
a) 9x4+22+6x2+y2+2y
= (3x2)2+2.3x2.1+1+y2+2y+1+20
=(3x2+1)2 + (y+1)2+22+42
b)x4+4+4y2+5x2+4xy
=x4+5x2+4+4y2+4xy
=x4+4x2+4+4y2+4xy+x2
=(x2)2+2x22+22+(2y)2+2.2yx+x2
=(x2+2)2+(2y+x)2
c)z2+y2-6z+2y+10
=z2-6z+9+y2+2y+1
=z2-2.z.3+9+(y+1)2
=(z-3)2+(y+1)2
d)x2+4y2+m2+4mn+4xy+4n2
=x2+4xy+4y2+4n2+4mn+m2
=x2+2x2y+(2y)2+(2n)2+2.2nm+m2
=(x+2y)2+(2n+m)2
e)x2+y2-6nx+9n2+4my+4m2
=x2-6nx+9n2+y2+4my+4m2
=x2-2x3n+(3n)2+y2+2y2n+(2m)2
=(x-3n)2+(y+2m)2
f)4x2-4xm+2m2+4mn+4n2
=4n2-4xm+m2+4n2+4mn+m2
=(2n)2-2.2xm+m2+(2n)2+2.2nm+m2
=(2n-m)2+(2n+m)2
g) Ghi thiếu đề,đề đúng :
9x2-12xy+5y2+2y+1
=9x2-12xy+4y2+y2+2y+1
=(3x)2-2.3x2y+(2y)2+(y+1)2
=(3x-2y)2+(y+1)2
phân tích n^3 + 3n^2 + 2n thảnh n.(n+1).(n+2) chia hết cho 6 vì chia hết cho 2 và 3 chia hết cho 15 là chia hết cho 3 với 5 nha
3, \(C=x^2-8xy+16y^2\)
\(C=x^2-2\cdot4y\cdot x+\left(4y\right)^2\)
\(C=\left(x-4y\right)^2\)
Thay \(x-4y=5\) vào C ta được:
\(C=5^2=25\)
Vậy: ......
4, \(D=9x^2+1620-12xy+4y^2\)
\(D=\left(9x^2-12xy+4y^2\right)+1620\)
\(D=\left[\left(3x\right)^2-2\cdot3x\cdot2y+\left(2y\right)^2\right]+1620\)
\(D=\left(3x-2y\right)^2+1620\)
Thay \(3x-2y=20\) vào D ta được:
\(D=20^2+1620=400+1620=2020\)
Vậy: ...
3/
\(C=x^2-8xy+16y^2=x^2-2.4.xy+\left(4y\right)^2=\left(x-4y\right)^2\)
Thay x - 4y = 5 ta có: \(C=5^2=25\)
4/
\(D=9x^2-12xy+4y^2+1620\\ =\left(3x\right)^2-3.2.2xy+\left(2y\right)^2+1620\\ =\left(3x-2y\right)^2+1620\)
Thay 3x - 2y = 20. Ta có: \(D=20^2+1620=400+1620=2020\)