K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2016

a) 9x4+22+6x2+y2+2y

= (3x2)2+2.3x2.1+1+y2+2y+1+20

=(3x2+1)2 + (y+1)2+22+42

b)x4+4+4y2+5x2+4xy

=x4+5x2+4+4y2+4xy

=x4+4x2+4+4y2+4xy+x2

=(x2)2+2x22+22+(2y)2+2.2yx+x2

=(x2+2)2+(2y+x)2

c)z2+y2-6z+2y+10

=z2-6z+9+y2+2y+1

=z2-2.z.3+9+(y+1)2

=(z-3)2+(y+1)2

d)x2+4y2+m2+4mn+4xy+4n2

=x2+4xy+4y2+4n2+4mn+m2

=x2+2x2y+(2y)2+(2n)2+2.2nm+m2

=(x+2y)2+(2n+m)2

e)x2+y2-6nx+9n2+4my+4m2

=x2-6nx+9n2+y2+4my+4m2

=x2-2x3n+(3n)2+y2+2y2n+(2m)2

=(x-3n)2+(y+2m)2

f)4x2-4xm+2m2+4mn+4n2

=4n2-4xm+m2+4n2+4mn+m2

=(2n)2-2.2xm+m2+(2n)2+2.2nm+m2

=(2n-m)2+(2n+m)2

g) Ghi thiếu đề,đề đúng :

9x2-12xy+5y2+2y+1

=9x2-12xy+4y2+y2+2y+1

=(3x)2-2.3x2y+(2y)2+(y+1)2

=(3x-2y)2+(y+1)2

27 tháng 6 2016

a )x2+2y2-2xy+2x-4y+2=0 
<=>x2-2x(y-1)+y2-2y+1+y2-2y+1=0 
<=>x2-2x(y-1)+(y-1)2+(y-1)2=0 
<=>(x-y+1)2+(y-1)2=0 
<=>x-y+1=0 va y-1=0 
<=>x=y-1 y=1 
<=>x=1-1=0 y=1

17 tháng 1 2017

1.=(x-y)(5x+1)

2.=(x+3)(2x+1)

3.=(3x-2y)2(1+1)=2(3x-2y)2

​4.bạn chép sai hay sao ý

5.=(2x-3y)2

6. = -(x+y)2

7. = -(a-5)2

17 tháng 1 2017

1. 5x(x-y)-(y-x)

= 5x(x-y)+(x-y)

= (x-y)(5x+1)

2. 2x(x+3)+(3+x)

= (x+3)(2x+1)

3. (3x-2y)2-(2x-3y)2

= (3x-2y-2x+3y)(3x-2y+2x-3y)

=(x+y)(5x-5y)

=5(x+y)(x-y)

4. 4-(a-b)2

= 22-(a-b)2

= (2-a+b)(2+a-b)

5. 4x2-12xy+9y2

= (2x-3y)2

6. -x2-2xy-y2

= -(x+y)2

7. 10a-a2-25

= -a2+10a-25

= -(a-5)2

3 tháng 9 2018

\(x^2-2x-4y^2-4y\)

\(=\left(x^2-4y^2\right)-\left(2x+4y\right)\)

\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-2y-2\right)\)

1 tháng 10 2020

\begin{array}{l} a){\left( {ab - 1} \right)^2} + {\left( {a + b} \right)^2}\\  = {a^2}{b^2} - 2ab + 1 + {a^2} + 2ab + {b^2}\\  = {a^2}{b^2} + 1 + {a^2} + {b^2}\\  = {a^2}\left( {{b^2} + 1} \right) + \left( {{b^2} + 1} \right)\\  = \left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)\\ c){x^3} - 4{x^2} + 12x - 27\\  = {x^3} - 27 + \left( { - 4{x^2} + 12x} \right)\\  = \left( {x - 3} \right)\left( {{x^2} + 3x + 9} \right) - 4x\left( {x - 3} \right)\\  = \left( {x - 3} \right)\left( {{x^2} + 3x + 9 - 4x} \right)\\  = \left( {x - 3} \right)\left( {{x^2} - x + 9} \right)\\ b){x^3} + 2{x^2} + 2x + 1\\  = {x^3} + 2{x^2} + x + x + 1\\  = x\left( {{x^2} + 2x + 1} \right) + \left( {x + 1} \right)\\  = x{\left( {x + 1} \right)^2} + \left( {x + 1} \right)\\  = \left( {x + 1} \right)\left( {x\left( {x + 1} \right) + 1} \right)\\  = \left( {x + 1} \right)\left( {{x^2} + x + 1} \right)\\ d){x^4} - 2{x^3} + 2x - 1\\  = {x^4} - 2{x^3} + {x^2} - {x^2} + 2x - 1\\  = {x^2}\left( {{x^2} - 2x + 1} \right) - \left( {{x^2} - 2x + 1} \right)\\  = \left( {{x^2} - 2x + 1} \right)\left( {{x^2} - 1} \right)\\  = {\left( {x - 1} \right)^2}\left( {x - 1} \right)\left( {x + 1} \right)\\  = {\left( {x - 1} \right)^3}\left( {x + 1} \right)\\ e){x^4} + 2{x^3} + 2{x^2} + 2x + 1\\  = {x^4} + 2{x^3} + {x^2} + {x^2} + 2x + 1\\  = {x^2}\left( {{x^2} + 2x + 1} \right) + \left( {{x^2} + 2x + 1} \right)\\  = \left( {{x^2} + 2x + 1} \right)\left( {{x^2} + 1} \right)\\  = {\left( {x + 1} \right)^2}\left( {{x^2} + 1} \right) \end{array}

15 tháng 7 2018

\(a,36x^2-\left(3x-2\right)^2=\left(6x-3x+2\right)\left(6x+3x-2\right)\)

\(=\left(3x+2\right)\left(9x-2\right)\)

phần b,c,d lm tg tự

\(e,16x^2-24xy+9y^2=\left(4x-3y\right)^2\)