Tìm tất cả các số nguyên n sao cho \(n^2+6n+28\) là một số chính phươ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2017

Ta có:

\(A=2^9+2^{13}+2^n\)

Xét \(n\ge9\)ta có

\(A=2^9\left(1+2^4+2^{n-9}\right)\)

A chia hết cho 29 nên A phải chia hết cho 210 (vì A là số chính phương).

\(\Rightarrow1+2^4+2^{n-9}\)là số chẵn 

\(\Rightarrow2^{n-9}\)là số lẻ

\(\Rightarrow n-9=0\)

\(\Rightarrow n=9\)

Thế ngược lại ta được: \(A=2^9+2^{13}+2^9=9216\)(đúng)

Xét \(n\le8\)thì ta có.

\(A=2^9+2^{13}+2^n=2^n\left(2^{9-n}+2^{13-n}+1\right)\)

Dễ thấy thừa số trong ngoặc luôn là số lẻ nên A sẽ không thể là số chính phương được

Vậy n = 9 thì A là số chính phương 

18 tháng 6 2018

Không hiểu

27 tháng 9 2018

\(n^4+2n^3+2n^2+n+7=k^2\)

\(\Leftrightarrow\left(n^2+n\right)^2+\left(n^2+n\right)+7=k^2\)

\(\Leftrightarrow4\left(n^2+n\right)^2+4\left(n^2+n\right)+1+27=4k^2\)

\(\Leftrightarrow\left(2n^2+2n+1\right)^2-4k^2=-27\)

\(\Leftrightarrow\left(2n^2+2n+1-2k\right)\left(2n^2+2n+1+2k\right)=-27\)

Làm nôt

15 tháng 11 2019

Đặt \(n^4+n^3+1=a^2\)

\(\Leftrightarrow64n^4+64n^3+64=\left(8a\right)^2\)

\(\Leftrightarrow\left(8n^2+4n-1\right)^2-16n^2+8n+16n^2+63=\left(8a\right)^2\)

\(\Leftrightarrow\left(8n^2+4n-1\right)^2+8n+63=\left(8a\right)^2\)

\(\Rightarrow\left(8a\right)^2>\left(8n^2+4n-1\right)^2\)

\(\Rightarrow\left(8a\right)^2\ge\left(8n^2+4n\right)^2\)

\(\Rightarrow\left(8n^2+4n-1\right)^2+8n+63\ge\left(8n^2+4n\right)^2\)

\(\Rightarrow\left(8n^2+4n\right)^2-2\left(8n^2+4n\right)+1+8n+63\ge\left(8n^2+4n\right)^2\)

\(\Rightarrow16n^2\le64\)

\(\Rightarrow n^2\le4\Rightarrow n\in\left\{1;2\right\}\) vì m nguyên dương.

Vậy ....

17 tháng 5 2020

666666666666666666666666666666666666667777777777777777777777777788888888888888888888899999999999999999999999999944444444444444444444445555555555555555555523243435356666356467578556475786896897896756745342111111111111111111111122222222222222222223333333333333333333333333333333333344444454444444444444555555555555556666666666666666666666777777777777777777777778888888888888899999999999999101010101010101010101010101001010010100101001010010100000000000000000000000000000000000000000000001111111111111111111111000000000000000010101010

29 tháng 6 2016

Giả sử n4+n3+1 là SCP

Vì n4+n3+1=(n2)2 nên ta có:

n4+n3+1=(n2+k)2=n4+2kn2+k2 ( k là 1 số nguyên dương)

=>n2(n-2k)=k2-1\(\ge\)0

Đặc biệt k2-1 chia hết n2

Do đó k2=1 hoặc n2\(\le\)k2-1

  • Nếu k2=1 thì k=1; n2(n-2)=0 ta có n=2 (tm)
  • Nếu \(k\ne1\)thì k2>k2-1\(\ge\)n2

=>k>n =>n-2<0 (mâu thuẫn với n2(n-2k)=k2-1\(\ge\)0)

Vậy n=2 thỏa mãn