K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2017

Ta có:

\(A=2^9+2^{13}+2^n\)

Xét \(n\ge9\)ta có

\(A=2^9\left(1+2^4+2^{n-9}\right)\)

A chia hết cho 29 nên A phải chia hết cho 210 (vì A là số chính phương).

\(\Rightarrow1+2^4+2^{n-9}\)là số chẵn 

\(\Rightarrow2^{n-9}\)là số lẻ

\(\Rightarrow n-9=0\)

\(\Rightarrow n=9\)

Thế ngược lại ta được: \(A=2^9+2^{13}+2^9=9216\)(đúng)

Xét \(n\le8\)thì ta có.

\(A=2^9+2^{13}+2^n=2^n\left(2^{9-n}+2^{13-n}+1\right)\)

Dễ thấy thừa số trong ngoặc luôn là số lẻ nên A sẽ không thể là số chính phương được

Vậy n = 9 thì A là số chính phương 

18 tháng 6 2018

Không hiểu

27 tháng 9 2018

\(n^4+2n^3+2n^2+n+7=k^2\)

\(\Leftrightarrow\left(n^2+n\right)^2+\left(n^2+n\right)+7=k^2\)

\(\Leftrightarrow4\left(n^2+n\right)^2+4\left(n^2+n\right)+1+27=4k^2\)

\(\Leftrightarrow\left(2n^2+2n+1\right)^2-4k^2=-27\)

\(\Leftrightarrow\left(2n^2+2n+1-2k\right)\left(2n^2+2n+1+2k\right)=-27\)

Làm nôt

12 tháng 1 2019

các số chứ ko phải cặp số nha

12 tháng 1 2019

mới có lớp 6 thôi à

19 tháng 1 2017

Giả sử có số \(n\) thoả đề. Khi đó do \(a\) chính phương nên \(4a\) cũng chính phương.

Và \(4a=4n^4+8n^3+8n^2+4n+28=\left(2n^2+2n+1\right)^2+27\)

Như vậy sẽ có 2 số chính phương lệch nhau \(27\) đơn vị là số \(4a\) và \(\left(2n^2+2n+1\right)^2\).

Ta sẽ tìm 2 số chính phương như thế.

-----

Ta sẽ giải pt nghiệm nguyên dương \(m^2-n^2=27=1.27=3.9\)

Ta có bảng: 

\(m+n\)\(27\)\(9\)
\(m-n\)\(1\)\(3\)
\(m^2\)\(196\)\(36\)
\(n^2\)\(169\)\(9\)

------

Theo bảng trên thì số \(\left(2n^2+2n+1\right)^2\) (số chính phương nhỏ hơn) sẽ nhận giá trị \(169\) và \(9\).

Đến đây bạn tự giải tiếp nha bạn.

Đáp số: \(2;-3\)

19 tháng 1 2017

chịu rồi 

tk nhé 

thanks 

2222

22 tháng 10 2020

\(\text{ta có n/x sau: số chính phương lẻ thì chia 4 dư 1}\)

\(\text{Nếu a chẵn thì: }a^2⋮4\text{ mà }a^2+2022\text{ chẵn và là số chính phương nên:}\)

\(a^2+2022⋮4\Rightarrow2022⋮4\left(\text{vô lí}\right)\)

tương tự với a lẻ thì a^2+2022 chia 4 dư 1 => a^2 chia 4 dư 1 (vô lí)

phương trình  vô nghiệm