Cho tam giác ABC vuông tại A, đường trung tuyến AM. Gọi I là trung điểm của AC , g...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2022

a)IM là đg trung bình của △ABC → IM//AB và IM = \(\dfrac{1}{2}AB\)

mà N đối xứng với M qua I → IN = IM hay IM = 1/2 NM 

⇒ AB // NM và AB = NM 

⇒ ABMN là hình bình hành

O là giao điểm 2 đg chéo ⇒ ON = OB

xét △ NMB có IO là đg trung bình → IO // MB và IO = 1/2 MB

mà MB = 1/2 BC 

⇒ IO = 1/4 BC hay BC = 4OI

b) thêm điều kiên là tam giác cân tại A

loading...

13 tháng 11 2022

Mình đang cần gấp để ôn thi, mong các bạn giúp mình với ạ.

 

12 tháng 1 2017

Bạn tự vẽ hình nha !

a) Theo đề, ta có:

N là điểm đối xứng với M qua I

mà I là trung điểm của AC hay I thuộc AC

=> N đối xứng với M qua AC.

b) Xét tam giác ABC có:

BM = CM (gt)

AI = CI (gt)

=> MI là đường trung bình của tam giác ABC

=> MI//AB

mà AB vuông góc với AC

=> MI vuông góc AC

Xét tứ giác ANCM có:

MI = NI (gt)

AI = CI (gt)

=> tứ giác ANCM là hình bình hành có MI vuông góc với AC

=> ANCM là hình thoi

c) Hình thoi ANCM là hình vuông khi đường chéo AM là phân giác của góc A

Tam giác ABC có AM vừa là phân giác vừa là trung tuyến nên tam giác ABC cân tại A .

Vậy điều kiện để ANCM là hình vuông là tam giác ABC vuông cân tại A.

XONG!!! okok

 Tự vẽ hình ...

a, Xét tứ giác ANCM có:

AI = CIMI = NI ( đối xứng)

Mà: AC cắt MN tai J

Nên: tứ giác ANCM là hình bình hành

Xét hình bình hành ANCM cógóc AMC = 900

=> hình bình hành ANCM là hình chữ nhật

b, Xét: Tam giác ABC cân tại A có: AM là đường trung tuyến

=> AM là đường cao

\(\widehat{AMB}=\widehat{AMC}=90^0\)

Xét tam giác AMB có góc AMB = 900

MK là đường trung tuyến ứng vs cạnh huyền AB

\(\Rightarrow MK=\frac{1}{2}AB\)(1)

Mà: K là trung điểm của AB

\(\Rightarrow KA=KB=\frac{1}{2}AB\)(2)

Từ (1), (2)=> MK = AK = BK (3)

Chứng minh tương tự ta có : 

\(MI=AI=CI=\frac{1}{2}AC\)(4)

Mà: AB = AC( tam giác ABC cân) (5)

Từ (3), (4),(5)

=> MI = AI = CI = MK = AK = BK

Xét tứ giác AKMI có:AK = KM = MI = AI

=> tứ giác AKMI là hình thoi

c, Ta có : AMCN là HCN

Để AMON là hình vuông thì phải cần thêm điều kiện là MI tia phân giác của góc M 

hc tốt ## 

29 tháng 10 2016

a.

AM là đường trung tuyến của tam giác ABC cân tại A

=> AM là đường cao của tam giác ABC cân tại A

=> AM _I_ BC

hay AMC = 900

I là trung điểm của AC (gt)

I là trung điểm của MN (M đối xứng N qua I)

=> AMCN là hình bình hành

mà AMC = 900

=> AMCN là hình chữ nhật

K là trung điểm của AB (gt)

M là trung điểm của BC (AM là đường trung tuyến của tam giác ABC)

=> KM là đường trung bình của tam giác ABC

=> KM = AC/2

mà IC = AC/2 (I là trung điểm của AC)

=> KM = IC

mà KM // IC (KM là đường trung bình của tam giác ABC)

=> MKIC là hình bình hành

b.

AN = MC (AMCN là hình chữ nhật)

mà MC = BM (M là trung điểm của BC)

=> AN = BM

mà AN // BM (AMCN là hình chữ nhật)

=> ANMB là hình bình hành

mà E là trung điển của AM

=> E là trung điểm của BN

c.

AMCN là hình vuông

<=> Tam giác ABC vuông cân tại A

10 tháng 11 2016

ko biết

2 tháng 12 2017

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

2 tháng 12 2017

a. Xét tam giác ABC có BM=MC; AI=IC

=> IM là đường trung bình của tam giác ABC => IM//AB; IM=1/2AB=AK

Xét tứ giác AKMI có IM//AK; IM=AK

=> AKMI là hbh

Do AB=AC=> 1/2AB=1/2AC=> AK=AI

Xét hbh AKMI có AK=AI

=> AKMI là hình thoi

b. •Xét tứ giác AMCN có AC, MN là 2 đường chéo cắt nhau tại I và AI=IC MI=IN

=> AMCN là hbh

Do tam giác ABC cân tại A nên AM vừa là trung tuyến vừa là đường cao

=> AMC=90*

Hbh AMCN có AMC=90*

=> AMCN là hcn

• Xét tam giác ABC có AK=BK; BM=MC

=> KM là đường trung bình của tam giác ABC => KM//AC hay KM//IC; KM=1/2AC=IC

Xét tứ giác MKIC có KM//IC; KM=IC

=> MKIC là hbh

c. Do AMCN là hcn nên NAM=90*; AN=MC

Từ NAM=90*=> ANvgAM mà BMvgAM

=> AN//BM

Từ AN=MC mà MC=BM => AN=BM

Xét tứ giác ABMN có AN=BM; AN//BM

=> ABMN là hbh => AM và BN cắt nhau tại trung điểm mỗi đoạn 

Mà E là trung điểm của AM

=> E là trung điểm của BN

d. Để AMCN là hình vuông thì AC vg MN

Xét tam giác vuông AMC có MI vừa là trung tuyến vưaf là đường cao

=> AMC vuông cân tại M => ACM=45*=ABM

=> tam giác ABC vuông cân tại A

a: Xét tứ giác AEDF có \(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)

nên AEDF là hình chữ nhật

b: Ta có: D và M đối xứng nhau qua AB

nên AB là đường trung trực của DM

=>AB vuông góc với DM tại trung điểm của DM

hay E là trung điểm của DM

Ta có: D và N đối xứng nhau qua AC

nên AClà đường trung trực của DN

=>AC vuông góc với DN tại trung điểm của DN

hay F là trung điểm của DN

Xét ΔABC có 

D là trung điểm của BC

DE//AC

DO đó: E là trung điểm của AB

Xét ΔABC có

D là trung điểm của BC

DF//AB

Do đó: F là trung điểm của CA

Xét tứ giác ADBM có 

E là trung điểm của AB

E là trung điểm của DM

Do đó: ADBM là hình bình hành

mà DA=DB

nên ADBM là hình thoi

Xét tứ giác ADCN có 

F là trung điểm của AC

F là trung điểm của DN

Do đó: ADCN là hình bình hành

mà DA=DC

nên ADCN là hình thoi

a: AM=BC/2=3cm

b: Xét tứ giác AMCN có

O là trung điểm chung của AC và MN

MA=MC

Do đó: AMCN là hình thoi