Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
AM là đường trung tuyến của tam giác ABC cân tại A
=> AM là đường cao của tam giác ABC cân tại A
=> AM _I_ BC
hay AMC = 900
I là trung điểm của AC (gt)
I là trung điểm của MN (M đối xứng N qua I)
=> AMCN là hình bình hành
mà AMC = 900
=> AMCN là hình chữ nhật
K là trung điểm của AB (gt)
M là trung điểm của BC (AM là đường trung tuyến của tam giác ABC)
=> KM là đường trung bình của tam giác ABC
=> KM = AC/2
mà IC = AC/2 (I là trung điểm của AC)
=> KM = IC
mà KM // IC (KM là đường trung bình của tam giác ABC)
=> MKIC là hình bình hành
b.
AN = MC (AMCN là hình chữ nhật)
mà MC = BM (M là trung điểm của BC)
=> AN = BM
mà AN // BM (AMCN là hình chữ nhật)
=> ANMB là hình bình hành
mà E là trung điển của AM
=> E là trung điểm của BN
c.
AMCN là hình vuông
<=> Tam giác ABC vuông cân tại A
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
a. Xét tam giác ABC có BM=MC; AI=IC
=> IM là đường trung bình của tam giác ABC => IM//AB; IM=1/2AB=AK
Xét tứ giác AKMI có IM//AK; IM=AK
=> AKMI là hbh
Do AB=AC=> 1/2AB=1/2AC=> AK=AI
Xét hbh AKMI có AK=AI
=> AKMI là hình thoi
b. •Xét tứ giác AMCN có AC, MN là 2 đường chéo cắt nhau tại I và AI=IC MI=IN
=> AMCN là hbh
Do tam giác ABC cân tại A nên AM vừa là trung tuyến vừa là đường cao
=> AMC=90*
Hbh AMCN có AMC=90*
=> AMCN là hcn
• Xét tam giác ABC có AK=BK; BM=MC
=> KM là đường trung bình của tam giác ABC => KM//AC hay KM//IC; KM=1/2AC=IC
Xét tứ giác MKIC có KM//IC; KM=IC
=> MKIC là hbh
c. Do AMCN là hcn nên NAM=90*; AN=MC
Từ NAM=90*=> ANvgAM mà BMvgAM
=> AN//BM
Từ AN=MC mà MC=BM => AN=BM
Xét tứ giác ABMN có AN=BM; AN//BM
=> ABMN là hbh => AM và BN cắt nhau tại trung điểm mỗi đoạn
Mà E là trung điểm của AM
=> E là trung điểm của BN
d. Để AMCN là hình vuông thì AC vg MN
Xét tam giác vuông AMC có MI vừa là trung tuyến vưaf là đường cao
=> AMC vuông cân tại M => ACM=45*=ABM
=> tam giác ABC vuông cân tại A
A B C M H N
a) Tứ giác ANCM có hai đường chéo MN và AC cắt nhau tại H
mà H là trung điểm AC và H alf trung điểm MN
=> ANCM là hình bình hành
b) M là trung điểm BC, H là trung điểm AC => MH là đường trung bình của tam giác ABC
=> MH // AB mà AB \(\perp\)AC => MH\(\perp\)AC hay MN\(\perp\)AC
=> Hình bình hành ANCM là hình thoi
AB= 4cm , AC= 3cm, tam giác ABC vuông tại A
Áp dụng định lí Pi ta go
=> BC=5 cm
Tam giác ABC vuông tại A có AM là đường trung tuyến => AM=1/2BC=2,5 cm , Các cạnh của hình thoi bằng nhau và bằng 2,5 cm
Tự vẽ hình ...
a, Xét tứ giác ANCM có:
AI = CIMI = NI ( đối xứng)
Mà: AC cắt MN tai J
Nên: tứ giác ANCM là hình bình hành
Xét hình bình hành ANCM cógóc AMC = 900
=> hình bình hành ANCM là hình chữ nhật
b, Xét: Tam giác ABC cân tại A có: AM là đường trung tuyến
=> AM là đường cao
\(\widehat{AMB}=\widehat{AMC}=90^0\)
Xét tam giác AMB có góc AMB = 900
MK là đường trung tuyến ứng vs cạnh huyền AB
\(\Rightarrow MK=\frac{1}{2}AB\)(1)
Mà: K là trung điểm của AB
\(\Rightarrow KA=KB=\frac{1}{2}AB\)(2)
Từ (1), (2)=> MK = AK = BK (3)
Chứng minh tương tự ta có :
\(MI=AI=CI=\frac{1}{2}AC\)(4)
Mà: AB = AC( tam giác ABC cân) (5)
Từ (3), (4),(5)
=> MI = AI = CI = MK = AK = BK
Xét tứ giác AKMI có:AK = KM = MI = AI
=> tứ giác AKMI là hình thoi
c, Ta có : AMCN là HCN
Để AMON là hình vuông thì phải cần thêm điều kiện là MI tia phân giác của góc M
hc tốt ##
a: AM=BC/2=3cm
b: Xét tứ giác AMCN có
O là trung điểm chung của AC và MN
MA=MC
Do đó: AMCN là hình thoi