Cho hình chóp S ABC . có SA=
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
20 tháng 6 2021

Bạn tự vẽ hình nhé.

Gọi \(O\)là tâm của đường tròn ngoại tiếp tam giác \(ABC\).

Do \(SA=SB=SC\)nên \(SO\perp\left(ABC\right)\).

Gọi \(H\)là trung điểm \(BC\)thì \(AH=\sqrt{AB^2-BH^2}=\sqrt{a^2-x^2}\)

\(S_{ABC}=\frac{1}{2}AH.BC=\frac{1}{2}\sqrt{a^2-x^2}.2x=x\sqrt{a^2-x^2}\)

\(AO=\frac{AB.AC.BC}{4S_{ABC}}=\frac{a.a.2x}{4x\sqrt{a^2-x^2}}=\frac{a^2}{2\sqrt{a^2-x^2}}\)

\(SO=\sqrt{SA^2-AO^2}=\sqrt{a^2-\frac{a^4}{4\left(a^2-x^2\right)}}=\frac{a\sqrt{3a^2-4x^2}}{2\sqrt{a^2-x^2}}\)

\(V_{S.ABC}=\frac{1}{3}S_{ABC}.SO=\frac{1}{3}x\sqrt{a^2-x^2}.\frac{a\sqrt{3a^2-4x^2}}{2\sqrt{a^2-x^2}}=\frac{ax\sqrt{3a^2-4x^2}}{6}\)

Ta có: \(x\sqrt{3a^2-4x^2}=\frac{1}{2}2x\sqrt{3a^2-4x^2}\le\frac{4x^2+3a^2-4x^2}{4}=\frac{3a^2}{4}\)

Suy ra \(V_{S.ABC}\le\frac{a.3a^2}{4.6}=\frac{a^3}{8}\)

Dấu \(=\)khi \(2x=\sqrt{3a^2-4x^2}\Leftrightarrow x=\frac{a\sqrt{6}}{4}\).

3 tháng 8 2019

1434000000 nha bạn

NV
28 tháng 3 2019

\(\left\{{}\begin{matrix}\overrightarrow{n_{\left(P1\right)}}=\left(1;-1;1\right)\\\overrightarrow{n_{\left(P2\right)}}=\left(3;2;-12\right)\end{matrix}\right.\) \(\Rightarrow\)\(\left[\overrightarrow{n_{\left(P1\right)}};\overrightarrow{n_{\left(P2\right)}}\right]=\left(10;15;5\right)=5\left(2;3;1\right)\)

Chọn \(\overrightarrow{n_{\left(p\right)}}=\left(2;3;1\right)\) là 1 vtpt của (P)

Phương trình (P): \(2x+3y+z=0\)

Câu 2:

\(\left\{{}\begin{matrix}\overrightarrow{u_d}=\left(2;1;1\right)\\\overrightarrow{u_{d'}}=\left(1;-2;1\right)\end{matrix}\right.\) \(\Rightarrow\left[\overrightarrow{u_d};\overrightarrow{u_{d'}}\right]=\left(3;-1;-5\right)\)

\(\Rightarrow\) Chọn \(\overrightarrow{n_{\alpha}}=\left(3;-1;-5\right)\) là một vtpt của \(\left(\alpha\right)\)

Phương trình \(\left(\alpha\right)\):

\(3\left(x-0\right)-1\left(y-1\right)-5\left(z-2\right)=0\)

\(\Leftrightarrow3x-y-5z+11=0\)

27 tháng 1 2021

3 khoang đầu 

1. Nhận diện tập hợp điểmTập hợp điểm là đường thẳngNếu biểu thức có dạng |z - a - bi| = |z - c - di|∣z−a−bi∣=∣z−c−di∣ thì tập hợp điểm biểu diễn zz là đường thẳng Ax + By + C = 0Ax+By+C=0, chính là trung trực đoạn thẳng ABAB với A(a , b)A(a,b) và B(c, d)B(c,d).Tập hợp điểm là đường tròn+ Nếu biểu thức có dạng |z - a - bi| = r∣z−a−bi∣=r thì tập hợp điểm biểu...
Đọc tiếp

1. Nhận diện tập hợp điểm

  • Tập hợp điểm là đường thẳng

Nếu biểu thức có dạng |z - a - bi| = |z - c - di|zabi=zcdi thì tập hợp điểm biểu diễn zz là đường thẳng Ax + By + C = 0Ax+By+C=0, chính là trung trực đoạn thẳng ABAB với A(a , b)A(a,b) và B(c, d)B(c,d).

  • Tập hợp điểm là đường tròn

+ Nếu biểu thức có dạng |z - a - bi| = rzabi=r thì tập hợp điểm biểu diễn zz là đường tròn (x - a)^2 + (y - b)^2 = r^2(xa)2+(yb)2=r2, hay x^2 + y^2 - 2ax - 2by + c = 0x2+y22ax2by+c=0.

+ Nếu (x - a)^2 + (y - b)^2 \le r^2(xa)2+(yb)2r2 hay |z - a - bi| \le rzabir thì tập hợp điểm biểu diễn zz là hình tròn tâm II, bán kính rr.

+ Nếu r^2 \le (x - a)^2 + (y - b)^2 \le R^2r2(xa)2+(yb)2R2 hay r \le |z - a - bi| \le RrzabiR thì tập hợp điểm biểu diễn zz là hình vành khăn giới hạn bởi hai đường tròn cùng tâm II, bán kính là rr và RR.

  • Tập hợp điểm là parabol

Parabol (P)(P) tâm I\left(-\dfrac b{2a}; -\dfrac{\Delta}{4a}\right)I(2ab;4aΔ) có phương trình dạng y = ax^2 + bx + cy=ax2+bx+c, với c \ne 0c=0.

  • Tập hợp điểm là elip

Nếu biểu thức có dạng |z - a_1 - b_1i|+|z - a_2 - b_2i| = 2aza1b1i+za2b2i=2a thì tập hợp điểm là: 

Đoạn thẳng ABAB nếu 2a = AB2a=AB.

Elip nếu 2a>AB2a>AB, với A(a_1;b_1)A(a1;b1) và B(a_2;b_2)B(a2;b2). Và dạng phương trình elip là \dfrac{x^2}{a^2} + \dfrac{y^2}{b^2} = 1a2x2+b2y2=1, với a>b>0a>b>0.

2. Tổng quát

+ Tập hợp điểm biểu diễn số phức w = f(z)w=f(z) biết điều kiện số phức zz

Rút zz theo ww rồi sử dụng điều kiện của zz tìm tập hợp hợp điểm.

+ Đặc biệt, điều kiện dạng |z| = az=a hay |z + b| = az+b=a thì lấy mô đun hai vế.

1
23 tháng 2 2021

đố ai giải được

I. Khái niệm cực đại, cực tiểuLuyện tập   Hàm số y=-x^2+1y=−x2+1 có bảng biến thiên và đồ thị như hình dưới đây.Hàm số có đạo hàm y'=0y′=0 tại x=x=.Trên khoảng \left(-\infty;+\infty\right)(−∞;+∞) hàm số đạt giá trị lớn nhất bằng  tại x=x=.Kiểm tra Định nghĩa: Hàm số y=f\left(x\right)y=f(x) xác định và liên tục trên khoảng \left(a;b\right)(a;b) (có...
Đọc tiếp

I. Khái niệm cực đại, cực tiểu

Luyện tập

 
 
 

Hàm số y=-x^2+1y=x2+1 có bảng biến thiên và đồ thị như hình dưới đây.

Hàm số có đạo hàm y'=0y=0 tại x=x=.

Trên khoảng \left(-\infty;+\infty\right)(;+) hàm số đạt giá trị lớn nhất bằng  tại x=x=.

Kiểm tra

 

Định nghĩa: Hàm số y=f\left(x\right)y=f(x) xác định và liên tục trên khoảng \left(a;b\right)(a;b) (có thể a là -\inftyb là +\infty+ ) và điểm x_0\in\left(a;b\right)x0(a;b).

a) Nếu tồn tại số h>0h>0 sao cho f\left(x\right)< f\left(x_0\right)f(x)<f(x0) với mọi x\in\left(x_0-h;x_0+h\right)x(x0h;x0+h) và x\ne x_0x=x0 thì ta nói hàm số f\left(x\right)f(x) đạt cực đại tại x_0x0.

b) Nếu tồn tại số h>0h>0 sao cho f\left(x\right)>f\left(x_0\right)f(x)>f(x0) với mọi x\in\left(x_0-h;x_0+h\right)x(x0h;x0+h) và x\ne x_0x=x0 thì ta nói hàm số f\left(x\right)f(x) đạt cực tiểu tại x_0x0.

Chú ý:

1) Nếu hàm số f\left(x\right)f(x) đạt cực đại (cực tiểu) tại x_0x0 thì x_0x0 được gọi là điểm cực đại (điểm cực tiểu) của hàm số; f\left(x_0\right)f(x0) được gọi là giá trị cực đại (giá trị cực tiểu) của hàm số, kí hiệu là f_{CĐ}fCĐ (f_{CT}fCT), còn điểm M\left(x_0;f\left(x_0\right)\right)M(x0;f(x0))  được gọi là điểm cực đại (điểm cực tiểu) của đồ thị hàm số.

2) Các điểm cực đại và cực tiểu được gọi chung là điểm cực trị. Giá trị cực đại (giá trị cực tiểu) còn gọi là cực đại (cực tiểu) và được gọi chung là cực trị của hàm số.

3) Nếu  hàm số y=f\left(x\right)y=f(x) có đạo hàm trên \left(a;b\right)(a;b) và đạt cực đại hoặc cực tiểu tại x_0x0 thì f'\left(x_0\right)=0f(x0)=0.

II. Điều kiện đủ để hàm số có cực trị

Định lý 1:  Giả sử hàm số y=f\left(x\right)y=f(x) liên tục trên khoảng K=\left(x_0-h;x_0+h\right)K=(x0h;x0+h) và có đạo hàm trên K hoặc trên K\backslash\left\{x_0\right\}K\{x0}, với h>0h>0.a) Nếu f'\left(x\right)>0f(x)>0 trên khoảng \left(x_0-h;x_0\right)(x0h;x0) và f'\left(x\right)< 0f(x)<0 trên khoảng \left(x_0;x_0+h\right)(x0;x0+h) thì x_0x0 là một điểm cực đại của hàm số f\left(x\right)f(x).

b)  Nếu f'\left(x\right)< 0f(x)<0 trên khoảng \left(x_0-h;x_0\right)(x0h;x0) và f'\left(x\right)>0f(x)>0 trên khoảng \left(x_0;x_0+h\right)(x0;x0+h) thì x_0x0 là một điểm cực tiểu của hàm số f\left(x\right)f(x).

    

 

Luyện tập

 
 
 

Tìm các điểm cực trị của hàm số y=-x^2+1y=x2+1.

Giải:

Hàm số xác định với mọi x\in\mathbb{R}xR.

f'\left(x\right)=-2xf(x)=2x ; f'\left(x\right)=0\Leftrightarrow x=0f(x)=0x=0.

Bảng biến thiên

Nhìn vào bảng biến thiên hãy cho biết khẳng định nào dưới đây đúng?

Hàm số đạt cực tiểu bằng 1 tại x=0x=0.
Hàm số đạt cực đại bằng 0 tại x=1x=1.
Hàm số không có điểm cực trị.
Điểm \left(0;1\right)(0;1) là điểm cực trị của đồ thị hàm số.
Kiểm tra

III. Qui tắc tìm cực trị

Qui tắc 1:

1. Tìm tập xác định.

2 Tính f'\left(x\right)f(x) . Tìm các điểm tại đó f'\left(x\right)f(x) bằng 0 hoặc không xác định.

3. Lập bảng biến thiên.

4. Từ bảng biến thiên suy ra các điểm cực trị.

 

Luyện tập

 
 
 

Cho hàm số y=-x\left(x^2-3\right)y=x(x23). Khẳng định nào dưới đây đúng?

A
Hàm số đạt cực đại tại x_1=0x1=0 và đạt cực tiểu tại x_2=\sqrt{3}x2=3.
B
Phương trình y'=0y=0 có 2 nghiệm là x_1=0x1=0 và x_2=\sqrt{3}x2=3.
C
Hàm số có 3 cực trị.
D
Hàm số đạt cực tiểu tại x_1=-1x1=1 và đạt cực đại tại x_2=1x2=1.
Kiểm tra

 

Định lý 2: Giả sử hàm số y=f\left(x\right)y=f(x) có đạo hàm cấp hai trong khoảng \left(x_0-h;x_0+h\right)(x0h;x0+h), với h>0h>0. Khi đó:

a) Nếu f'\left(x_0\right)=0,f''\left(x_0\right)>0f(x0)=0,f′′(x0)>0 thì x_0x0 là điểm cực tiểu;

b) Nếu f'\left(x_0\right)=0,f''\left(x_0\right)< 0f(x0)=0,f′′(x0)<0 thì x_0x0 là điểm cực đại.

Áp dụng Định lý 2 ta có qui tắc sau đây để tìm cực trị của hàm số.

Qui tắc 2:

1. Tìm tập xác định.

2. Tính f'\left(x\right)f(x). Giải phương trình f'\left(x\right)=0f(x)=0 và kí hiệu x_ixi (i=1,2,...,ni=1,2,...,n) là tập các nghiệm của nó.

3. Tính f''\left(x\right)f′′(x) và f''\left(x_i\right)f′′(xi).

4. Dựa vào dấu của f''\left(x_i\right)f′′(xi) suy ra tính chất cực trị của điểm x_ixi.

 

Luyện tập

 
 
 

Tìm các điểm cực trị của hàm số y=\dfrac{x^4}{4}-2x^2+6y=4x42x2+6.

Giải:

Hàm số xác định với mọi x\in\mathbb{R}xR.

f'\left(x\right)=x^3-4x=x\left(x^2-4\right)f(x)=x34x=x(x24)f'\left(x\right)=0\Leftrightarrow\left[{}\begin{aligned}x_1=0\\x_2=-2\\x_3=2\end{aligned}\right.f(x)=0x1=0x2=2x3=2

f''\left(x\right)=3x^2-4f′′(x)=3x24.

Với x_1=0x1=0 ta có f''\left(0\right)f′′(0) <> 0 \Rightarrow x_0=0x0=0 là điểm cực tiểucực đại.

Với x_2=-2x2=2 ta có f''\left(-2\right)f′′(2) <> 0 \Rightarrow x_2=-2x2=2 là điểm cực tiểucực đại.

Kiểm tra

I. Khái niệm cực đại, cực tiểu

Luyện tập

 
 
 

Hàm số y=-x^2+1y=x2+1 có bảng biến thiên và đồ thị như hình dưới đây.

Hàm số có đạo hàm y'=0y=0 tại x=x=.

Trên khoảng \left(-\infty;+\infty\right)(;+) hàm số đạt giá trị lớn nhất bằng  tại x=x=.

Kiểm tra

 

Định nghĩa: Hàm số y=f\left(x\right)y=f(x) xác định và liên tục trên khoảng \left(a;b\right)(a;b) (có thể a là -\inftyb là +\infty+ ) và điểm x_0\in\left(a;b\right)x0(a;b).

a) Nếu tồn tại số h>0h>0 sao cho f\left(x\right)< f\left(x_0\right)f(x)<f(x0) với mọi x\in\left(x_0-h;x_0+h\right)x(x0h;x0+h) và x\ne x_0x=x0 thì ta nói hàm số f\left(x\right)f(x) đạt cực đại tại x_0x0.

b) Nếu tồn tại số h>0h>0 sao cho f\left(x\right)>f\left(x_0\right)f(x)>f(x0) với mọi x\in\left(x_0-h;x_0+h\right)x(x0h;x0+h) và x\ne x_0x=x0 thì ta nói hàm số f\left(x\right)f(x) đạt cực tiểu tại x_0x0.

Chú ý:

1) Nếu hàm số f\left(x\right)f(x) đạt cực đại (cực tiểu) tại x_0x0 thì x_0x0 được gọi là điểm cực đại (điểm cực tiểu) của hàm số; f\left(x_0\right)f(x0) được gọi là giá trị cực đại (giá trị cực tiểu) của hàm số, kí hiệu là f_{CĐ}fCĐ (f_{CT}fCT), còn điểm M\left(x_0;f\left(x_0\right)\right)M(x0;f(x0))  được gọi là điểm cực đại (điểm cực tiểu) của đồ thị hàm số.

2) Các điểm cực đại và cực tiểu được gọi chung là điểm cực trị. Giá trị cực đại (giá trị cực tiểu) còn gọi là cực đại (cực tiểu) và được gọi chung là cực trị của hàm số.

3) Nếu  hàm số y=f\left(x\right)y=f(x) có đạo hàm trên \left(a;b\right)(a;b) và đạt cực đại hoặc cực tiểu tại x_0x0 thì f'\left(x_0\right)=0f(x0)=0.

II. Điều kiện đủ để hàm số có cực trị

Định lý 1:  Giả sử hàm số y=f\left(x\right)y=f(x) liên tục trên khoảng K=\left(x_0-h;x_0+h\right)K=(x0h;x0+h) và có đạo hàm trên K hoặc trên K\backslash\left\{x_0\right\}K\{x0}, với h>0h>0.a) Nếu f'\left(x\right)>0f(x)>0 trên khoảng \left(x_0-h;x_0\right)(x0h;x0) và f'\left(x\right)< 0f(x)<0 trên khoảng \left(x_0;x_0+h\right)(x0;x0+h) thì x_0x0 là một điểm cực đại của hàm số f\left(x\right)f(x).

b)  Nếu f'\left(x\right)< 0f(x)<0 trên khoảng \left(x_0-h;x_0\right)(x0h;x0) và f'\left(x\right)>0f(x)>0 trên khoảng \left(x_0;x_0+h\right)(x0;x0+h) thì x_0x0 là một điểm cực tiểu của hàm số f\left(x\right)f(x).

    

 

Luyện tập

 
 
 

Tìm các điểm cực trị của hàm số y=-x^2+1y=x2+1.

Giải:

Hàm số xác định với mọi x\in\mathbb{R}xR.

f'\left(x\right)=-2xf(x)=2x ; f'\left(x\right)=0\Leftrightarrow x=0f(x)=0x=0.

Bảng biến thiên

Nhìn vào bảng biến thiên hãy cho biết khẳng định nào dưới đây đúng?

Hàm số đạt cực tiểu bằng 1 tại x=0x=0.
Hàm số đạt cực đại bằng 0 tại x=1x=1.
Hàm số không có điểm cực trị.
Điểm \left(0;1\right)(0;1) là điểm cực trị của đồ thị hàm số.
Kiểm tra

III. Qui tắc tìm cực trị

Qui tắc 1:

1. Tìm tập xác định.

2 Tính f'\left(x\right)f(x) . Tìm các điểm tại đó f'\left(x\right)f(x) bằng 0 hoặc không xác định.

3. Lập bảng biến thiên.

4. Từ bảng biến thiên suy ra các điểm cực trị.

 

Luyện tập

 
 
 

Cho hàm số y=-x\left(x^2-3\right)y=x(x23). Khẳng định nào dưới đây đúng?

A
Hàm số đạt cực đại tại x_1=0x1=0 và đạt cực tiểu tại x_2=\sqrt{3}x2=3.
B
Phương trình y'=0y=0 có 2 nghiệm là x_1=0x1=0 và x_2=\sqrt{3}x2=3.
C
Hàm số có 3 cực trị.
D
Hàm số đạt cực tiểu tại x_1=-1x1=1 và đạt cực đại tại x_2=1x2=1.
Kiểm tra

 

Định lý 2: Giả sử hàm số y=f\left(x\right)y=f(x) có đạo hàm cấp hai trong khoảng \left(x_0-h;x_0+h\right)(x0h;x0+h), với h>0h>0. Khi đó:

a) Nếu f'\left(x_0\right)=0,f''\left(x_0\right)>0f(x0)=0,f′′(x0)>0 thì x_0x0 là điểm cực tiểu;

b) Nếu f'\left(x_0\right)=0,f''\left(x_0\right)< 0f(x0)=0,f′′(x0)<0 thì x_0x0 là điểm cực đại.

Áp dụng Định lý 2 ta có qui tắc sau đây để tìm cực trị của hàm số.

Qui tắc 2:

1. Tìm tập xác định.

2. Tính f'\left(x\right)f(x). Giải phương trình f'\left(x\right)=0f(x)=0 và kí hiệu x_ixi (i=1,2,...,ni=1,2,...,n) là tập các nghiệm của nó.

3. Tính f''\left(x\right)f′′(x) và f''\left(x_i\right)f′′(xi).

4. Dựa vào dấu của f''\left(x_i\right)f′′(xi) suy ra tính chất cực trị của điểm x_ixi.

 

Luyện tập

 
 
 

Tìm các điểm cực trị của hàm số y=\dfrac{x^4}{4}-2x^2+6y=4x42x2+6.

Giải:

Hàm số xác định với mọi x\in\mathbb{R}xR.

f'\left(x\right)=x^3-4x=x\left(x^2-4\right)f(x)=x34x=x(x24)f'\left(x\right)=0\Leftrightarrow\left[{}\begin{aligned}x_1=0\\x_2=-2\\x_3=2\end{aligned}\right.f(x)=0x1=0x2=2x3=2

f''\left(x\right)=3x^2-4f′′(x)=3x24.

Với x_1=0x1=0 ta có f''\left(0\right)f′′(0) <> 0 \Rightarrow x_0=0x0=0 là điểm cực tiểucực đại.

Với x_2=-2x2=2 ta có f''\left(-2\right)f′′(2) <> 0 \Rightarrow x_2=-2x2=2 là điểm cực tiểucực đại.

Kiểm tra

I. Khái niệm cực đại, cực tiểu

Luyện tập

 
 
 

Hàm số y=-x^2+1y=x2+1 có bảng biến thiên và đồ thị như hình dưới đây.

Hàm số có đạo hàm y'=0y=0 tại x=x=.

Trên khoảng \left(-\infty;+\infty\right)(;+) hàm số đạt giá trị lớn nhất bằng  tại x=x=.

Kiểm tra

 

Định nghĩa: Hàm số y=f\left(x\right)y=f(x) xác định và liên tục trên khoảng \left(a;b\right)(a;b) (có thể a là -\inftyb là +\infty+ ) và điểm x_0\in\left(a;b\right)x0(a;b).

a) Nếu tồn tại số h>0h>0 sao cho f\left(x\right)< f\left(x_0\right)f(x)<f(x0) với mọi x\in\left(x_0-h;x_0+h\right)x(x0h;x0+h) và x\ne x_0x=x0 thì ta nói hàm số f\left(x\right)f(x) đạt cực đại tại x_0x0.

b) Nếu tồn tại số h>0h>0 sao cho f\left(x\right)>f\left(x_0\right)f(x)>f(x0) với mọi x\in\left(x_0-h;x_0+h\right)x(x0h;x0+h) và x\ne x_0x=x0 thì ta nói hàm số f\left(x\right)f(x) đạt cực tiểu tại x_0x0.

Chú ý:

1) Nếu hàm số f\left(x\right)f(x) đạt cực đại (cực tiểu) tại x_0x0 thì x_0x0 được gọi là điểm cực đại (điểm cực tiểu) của hàm số; f\left(x_0\right)f(x0) được gọi là giá trị cực đại (giá trị cực tiểu) của hàm số, kí hiệu là f_{CĐ}fCĐ (f_{CT}fCT), còn điểm M\left(x_0;f\left(x_0\right)\right)M(x0;f(x0))  được gọi là điểm cực đại (điểm cực tiểu) của đồ thị hàm số.

2) Các điểm cực đại và cực tiểu được gọi chung là điểm cực trị. Giá trị cực đại (giá trị cực tiểu) còn gọi là cực đại (cực tiểu) và được gọi chung là cực trị của hàm số.

3) Nếu  hàm số y=f\left(x\right)y=f(x) có đạo hàm trên \left(a;b\right)(a;b) và đạt cực đại hoặc cực tiểu tại x_0x0 thì f'\left(x_0\right)=0f(x0)=0.

II. Điều kiện đủ để hàm số có cực trị

Định lý 1:  Giả sử hàm số y=f\left(x\right)y=f(x) liên tục trên khoảng K=\left(x_0-h;x_0+h\right)K=(x0h;x0+h) và có đạo hàm trên K hoặc trên K\backslash\left\{x_0\right\}K\{x0}, với h>0h>0.a) Nếu f'\left(x\right)>0f(x)>0 trên khoảng \left(x_0-h;x_0\right)(x0h;x0) và f'\left(x\right)< 0f(x)<0 trên khoảng \left(x_0;x_0+h\right)(x0;x0+h) thì x_0x0 là một điểm cực đại của hàm số f\left(x\right)f(x).

b)  Nếu f'\left(x\right)< 0f(x)<0 trên khoảng \left(x_0-h;x_0\right)(x0h;x0) và f'\left(x\right)>0f(x)>0 trên khoảng \left(x_0;x_0+h\right)(x0;x0+h) thì x_0x0 là một điểm cực tiểu của hàm số f\left(x\right)f(x).

    

 

Luyện tập

 
 
 

Tìm các điểm cực trị của hàm số y=-x^2+1y=x2+1.

Giải:

Hàm số xác định với mọi x\in\mathbb{R}xR.

f'\left(x\right)=-2xf(x)=2x ; f'\left(x\right)=0\Leftrightarrow x=0f(x)=0x=0.

Bảng biến thiên

Nhìn vào bảng biến thiên hãy cho biết khẳng định nào dưới đây đúng?

Hàm số đạt cực tiểu bằng 1 tại x=0x=0.
Hàm số đạt cực đại bằng 0 tại x=1x=1.
Hàm số không có điểm cực trị.
Điểm \left(0;1\right)(0;1) là điểm cực trị của đồ thị hàm số.
Kiểm tra

III. Qui tắc tìm cực trị

Qui tắc 1:

1. Tìm tập xác định.

2 Tính f'\left(x\right)f(x) . Tìm các điểm tại đó f'\left(x\right)f(x) bằng 0 hoặc không xác định.

3. Lập bảng biến thiên.

4. Từ bảng biến thiên suy ra các điểm cực trị.

 

Luyện tập

 
 
 

Cho hàm số y=-x\left(x^2-3\right)y=x(x23). Khẳng định nào dưới đây đúng?

A
Hàm số đạt cực đại tại x_1=0x1=0 và đạt cực tiểu tại x_2=\sqrt{3}x2=3.
B
Phương trình y'=0y=0 có 2 nghiệm là x_1=0x1=0 và x_2=\sqrt{3}x2=3.
C
Hàm số có 3 cực trị.
D
Hàm số đạt cực tiểu tại x_1=-1x1=1 và đạt cực đại tại x_2=1x2=1.
Kiểm tra

 

Định lý 2: Giả sử hàm số y=f\left(x\right)y=f(x) có đạo hàm cấp hai trong khoảng \left(x_0-h;x_0+h\right)(x0h;x0+h), với h>0h>0. Khi đó:

a) Nếu f'\left(x_0\right)=0,f''\left(x_0\right)>0f(x0)=0,f′′(x0)>0 thì x_0x0 là điểm cực tiểu;

b) Nếu f'\left(x_0\right)=0,f''\left(x_0\right)< 0f(x0)=0,f′′(x0)<0 thì x_0x0 là điểm cực đại.

Áp dụng Định lý 2 ta có qui tắc sau đây để tìm cực trị của hàm số.

Qui tắc 2:

1. Tìm tập xác định.

2. Tính f'\left(x\right)f(x). Giải phương trình f'\left(x\right)=0f(x)=0 và kí hiệu x_ixi (i=1,2,...,ni=1,2,...,n) là tập các nghiệm của nó.

3. Tính f''\left(x\right)f′′(x) và f''\left(x_i\right)f′′(xi).

4. Dựa vào dấu của f''\left(x_i\right)f′′(xi) suy ra tính chất cực trị của điểm x_ixi.

 

Luyện tập

 
 
 

Tìm các điểm cực trị của hàm số y=\dfrac{x^4}{4}-2x^2+6y=4x42x2+6.

Giải:

Hàm số xác định với mọi x\in\mathbb{R}xR.

f'\left(x\right)=x^3-4x=x\left(x^2-4\right)f(x)=x34x=x(x24)f'\left(x\right)=0\Leftrightarrow\left[{}\begin{aligned}x_1=0\\x_2=-2\\x_3=2\end{aligned}\right.f(x)=0x1=0x2=2x3=2

f''\left(x\right)=3x^2-4f′′(x)=3x24.

Với x_1=0x1=0 ta có f''\left(0\right)f′′(0) <> 0 \Rightarrow x_0=0x0=0 là điểm cực tiểucực đại.

Với x_2=-2x2=2 ta có f''\left(-2\right)f′′(2) <> 0 \Rightarrow x_2=-2x2=2 là điểm cực tiểucực đại.

Kiểm tra

I. Khái niệm cực đại, cực tiểu

Luyện tập

 
 
 

Hàm số y=-x^2+1y=x2+1 có bảng biến thiên và đồ thị như hình dưới đây.

Hàm số có đạo hàm y'=0y=0 tại x=x=.

Trên khoảng \left(-\infty;+\infty\right)(;+) hàm số đạt giá trị lớn nhất bằng  tại x=x=.

Kiểm tra

 

Định nghĩa: Hàm số y=f\left(x\right)y=f(x) xác định và liên tục trên khoảng \left(a;b\right)(a;b) (có thể a là -\inftyb là +\infty+ ) và điểm x_0\in\left(a;b\right)x0(a;b).

a) Nếu tồn tại số h>0h>0 sao cho f\left(x\right)< f\left(x_0\right)f(x)<f(x0) với mọi x\in\left(x_0-h;x_0+h\right)x(x0h;x0+h) và x\ne x_0x=x0 thì ta nói hàm số f\left(x\right)f(x) đạt cực đại tại x_0x0.

b) Nếu tồn tại số h>0h>0 sao cho f\left(x\right)>f\left(x_0\right)f(x)>f(x0) với mọi x\in\left(x_0-h;x_0+h\right)x(x0h;x0+h) và x\ne x_0x=x0 thì ta nói hàm số f\left(x\right)f(x) đạt cực tiểu tại x_0x0.

Chú ý:

1) Nếu hàm số f\left(x\right)f(x) đạt cực đại (cực tiểu) tại x_0x0 thì x_0x0 được gọi là điểm cực đại (điểm cực tiểu) của hàm số; f\left(x_0\right)f(x0) được gọi là giá trị cực đại (giá trị cực tiểu) của hàm số, kí hiệu là f_{CĐ}fCĐ (f_{CT}fCT), còn điểm M\left(x_0;f\left(x_0\right)\right)M(x0;f(x0))  được gọi là điểm cực đại (điểm cực tiểu) của đồ thị hàm số.

2) Các điểm cực đại và cực tiểu được gọi chung là điểm cực trị. Giá trị cực đại (giá trị cực tiểu) còn gọi là cực đại (cực tiểu) và được gọi chung là cực trị của hàm số.

3) Nếu  hàm số y=f\left(x\right)y=f(x) có đạo hàm trên \left(a;b\right)(a;b) và đạt cực đại hoặc cực tiểu tại x_0x0 thì f'\left(x_0\right)=0f(x0)=0.

II. Điều kiện đủ để hàm số có cực trị

Định lý 1:  Giả sử hàm số y=f\left(x\right)y=f(x) liên tục trên khoảng K=\left(x_0-h;x_0+h\right)K=(x0h;x0+h) và có đạo hàm trên K hoặc trên K\backslash\left\{x_0\right\}K\{x0}, với h>0h>0.a) Nếu f'\left(x\right)>0f(x)>0 trên khoảng \left(x_0-h;x_0\right)(x0h;x0) và f'\left(x\right)< 0f(x)<0 trên khoảng \left(x_0;x_0+h\right)(x0;x0+h) thì x_0x0 là một điểm cực đại của hàm số f\left(x\right)f(x).

b)  Nếu f'\left(x\right)< 0f(x)<0 trên khoảng \left(x_0-h;x_0\right)(x0h;x0) và f'\left(x\right)>0f(x)>0 trên khoảng \left(x_0;x_0+h\right)(x0;x0+h) thì x_0x0 là một điểm cực tiểu của hàm số f\left(x\right)f(x).

    

 

Luyện tập

 
 
 

Tìm các điểm cực trị của hàm số y=-x^2+1y=x2+1.

Giải:

Hàm số xác định với mọi x\in\mathbb{R}xR.

f'\left(x\right)=-2xf(x)=2x ; f'\left(x\right)=0\Leftrightarrow x=0f(x)=0x=0.

Bảng biến thiên

Nhìn vào bảng biến thiên hãy cho biết khẳng định nào dưới đây đúng?

Hàm số đạt cực tiểu bằng 1 tại x=0x=0.
Hàm số đạt cực đại bằng 0 tại x=1x=1.
Hàm số không có điểm cực trị.
Điểm \left(0;1\right)(0;1) là điểm cực trị của đồ thị hàm số.
Kiểm tra

III. Qui tắc tìm cực trị

Qui tắc 1:

1. Tìm tập xác định.

2 Tính f'\left(x\right)f(x) . Tìm các điểm tại đó f'\left(x\right)f(x) bằng 0 hoặc không xác định.

3. Lập bảng biến thiên.

4. Từ bảng biến thiên suy ra các điểm cực trị.

 

Luyện tập

 
 
 

Cho hàm số y=-x\left(x^2-3\right)y=x(x23). Khẳng định nào dưới đây đúng?

A
Hàm số đạt cực đại tại x_1=0x1=0 và đạt cực tiểu tại x_2=\sqrt{3}x2=3.
B
Phương trình y'=0y=0 có 2 nghiệm là x_1=0x1=0 và x_2=\sqrt{3}x2=3.
C
Hàm số có 3 cực trị.
D
Hàm số đạt cực tiểu tại x_1=-1x1=1 và đạt cực đại tại x_2=1x2=1.
Kiểm tra

 

Định lý 2: Giả sử hàm số y=f\left(x\right)y=f(x) có đạo hàm cấp hai trong khoảng \left(x_0-h;x_0+h\right)(x0h;x0+h), với h>0h>0. Khi đó:

a) Nếu f'\left(x_0\right)=0,f''\left(x_0\right)>0f(x0)=0,f′′(x0)>0 thì x_0x0 là điểm cực tiểu;

b) Nếu f'\left(x_0\right)=0,f''\left(x_0\right)< 0f(x0)=0,f′′(x0)<0 thì x_0x0 là điểm cực đại.

Áp dụng Định lý 2 ta có qui tắc sau đây để tìm cực trị của hàm số.

Qui tắc 2:

1. Tìm tập xác định.

2. Tính f'\left(x\right)f(x). Giải phương trình f'\left(x\right)=0f(x)=0 và kí hiệu x_ixi (i=1,2,...,ni=1,2,...,n) là tập các nghiệm của nó.

3. Tính f''\left(x\right)f′′(x) và f''\left(x_i\right)f′′(xi).

4. Dựa vào dấu của f''\left(x_i\right)f′′(xi) suy ra tính chất cực trị của điểm x_ixi.

 

Luyện tập

 
 
 

Tìm các điểm cực trị của hàm số y=\dfrac{x^4}{4}-2x^2+6y=4x42x2+6.

Giải:

Hàm số xác định với mọi x\in\mathbb{R}xR.

f'\left(x\right)=x^3-4x=x\left(x^2-4\right)f(x)=x34x=x(x24)f'\left(x\right)=0\Leftrightarrow\left[{}\begin{aligned}x_1=0\\x_2=-2\\x_3=2\end{aligned}\right.f(x)=0x1=0x2=2x3=2

f''\left(x\right)=3x^2-4f′′(x)=3x24.

Với x_1=0x1=0 ta có f''\left(0\right)f′′(0) <> 0 \Rightarrow x_0=0x0=0 là điểm cực tiểucực đại.

Với x_2=-2x2=2 ta có f''\left(-2\right)f′′(2) <> 0 \Rightarrow x_2=-2x2=2 là điểm cực tiểucực đại.

Kiểm tra

I. Khái niệm cực đại, cực tiểu

Luyện tập

 
 
 

Hàm số y=-x^2+1y=x2+1 có bảng biến thiên và đồ thị như hình dưới đây.

Hàm số có đạo hàm y'=0y=0 tại x=x=.

Trên khoảng \left(-\infty;+\infty\right)(;+) hàm số đạt giá trị lớn nhất bằng  tại x=x=.

Kiểm tra

 

Định nghĩa: Hàm số y=f\left(x\right)y=f(x) xác định và liên tục trên khoảng \left(a;b\right)(a;b) (có thể a là -\inftyb là +\infty+ ) và điểm x_0\in\left(a;b\right)x0(a;b).

a) Nếu tồn tại số h>0h>0 sao cho f\left(x\right)< f\left(x_0\right)f(x)<f(x0) với mọi x\in\left(x_0-h;x_0+h\right)x(x0h;x0+h) và x\ne x_0x=x0 thì ta nói hàm số f\left(x\right)f(x) đạt cực đại tại x_0x0.

b) Nếu tồn tại số h>0h>0 sao cho f\left(x\right)>f\left(x_0\right)f(x)>f(x0) với mọi x\in\left(x_0-h;x_0+h\right)x(x0h;x0+h) và x\ne x_0x=x0 thì ta nói hàm số f\left(x\right)f(x) đạt cực tiểu tại x_0x0.

Chú ý:

1) Nếu hàm số f\left(x\right)f(x) đạt cực đại (cực tiểu) tại x_0x0 thì x_0x0 được gọi là điểm cực đại (điểm cực tiểu) của hàm số; f\left(x_0\right)f(x0) được gọi là giá trị cực đại (giá trị cực tiểu) của hàm số, kí hiệu là f_{CĐ}fCĐ (f_{CT}fCT), còn điểm M\left(x_0;f\left(x_0\right)\right)M(x0;f(x0))  được gọi là điểm cực đại (điểm cực tiểu) của đồ thị hàm số.

2) Các điểm cực đại và cực tiểu được gọi chung là điểm cực trị. Giá trị cực đại (giá trị cực tiểu) còn gọi là cực đại (cực tiểu) và được gọi chung là cực trị của hàm số.

3) Nếu  hàm số y=f\left(x\right)y=f(x) có đạo hàm trên \left(a;b\right)(a;b) và đạt cực đại hoặc cực tiểu tại x_0x0 thì f'\left(x_0\right)=0f(x0)=0.

II. Điều kiện đủ để hàm số có cực trị

Định lý 1:  Giả sử hàm số y=f\left(x\right)y=f(x) liên tục trên khoảng K=\left(x_0-h;x_0+h\right)K=(x0h;x0+h) và có đạo hàm trên K hoặc trên K\backslash\left\{x_0\right\}K\{x0}, với h>0h>0.a) Nếu f'\left(x\right)>0f(x)>0 trên khoảng \left(x_0-h;x_0\right)(x0h;x0) và f'\left(x\right)< 0f(x)<0 trên khoảng \left(x_0;x_0+h\right)(x0;x0+h) thì x_0x0 là một điểm cực đại của hàm số f\left(x\right)f(x).

b)  Nếu f'\left(x\right)< 0f(x)<0 trên khoảng \left(x_0-h;x_0\right)(x0h;x0) và f'\left(x\right)>0f(x)>0 trên khoảng \left(x_0;x_0+h\right)(x0;x0+h) thì x_0x0 là một điểm cực tiểu của hàm số f\left(x\right)f(x).

    

 

Luyện tập

 
 
 

Tìm các điểm cực trị của hàm số y=-x^2+1y=x2+1.

Giải:

Hàm số xác định với mọi x\in\mathbb{R}xR.

f'\left(x\right)=-2xf(x)=2x ; f'\left(x\right)=0\Leftrightarrow x=0f(x)=0x=0.

Bảng biến thiên

Nhìn vào bảng biến thiên hãy cho biết khẳng định nào dưới đây đúng?

Hàm số đạt cực tiểu bằng 1 tại x=0x=0.
Hàm số đạt cực đại bằng 0 tại x=1x=1.
Hàm số không có điểm cực trị.
Điểm \left(0;1\right)(0;1) là điểm cực trị của đồ thị hàm số.
Kiểm tra

III. Qui tắc tìm cực trị

Qui tắc 1:

1. Tìm tập xác định.

2 Tính f'\left(x\right)f(x) . Tìm các điểm tại đó f'\left(x\right)f(x) bằng 0 hoặc không xác định.

3. Lập bảng biến thiên.

4. Từ bảng biến thiên suy ra các điểm cực trị.

 

Luyện tập

 
 
 

Cho hàm số y=-x\left(x^2-3\right)y=x(x23). Khẳng định nào dưới đây đúng?

A
Hàm số đạt cực đại tại x_1=0x1=0 và đạt cực tiểu tại x_2=\sqrt{3}x2=3.
B
Phương trình y'=0y=0 có 2 nghiệm là x_1=0x1=0 và x_2=\sqrt{3}x2=3.
C
Hàm số có 3 cực trị.
D
Hàm số đạt cực tiểu tại x_1=-1x1=1 và đạt cực đại tại x_2=1x2=1.
Kiểm tra

 

Định lý 2: Giả sử hàm số y=f\left(x\right)y=f(x) có đạo hàm cấp hai trong khoảng \left(x_0-h;x_0+h\right)(x0h;x0+h), với h>0h>0. Khi đó:

a) Nếu f'\left(x_0\right)=0,f''\left(x_0\right)>0f(x0)=0,f′′(x0)>0 thì x_0x0 là điểm cực tiểu;

b) Nếu f'\left(x_0\right)=0,f''\left(x_0\right)< 0f(x0)=0,f′′(x0)<0 thì x_0x0 là điểm cực đại.

Áp dụng Định lý 2 ta có qui tắc sau đây để tìm cực trị của hàm số.

Qui tắc 2:

1. Tìm tập xác định.

2. Tính f'\left(x\right)f(x). Giải phương trình f'\left(x\right)=0f(x)=0 và kí hiệu x_ixi (i=1,2,...,ni=1,2,...,n) là tập các nghiệm của nó.

3. Tính f''\left(x\right)f′′(x) và f''\left(x_i\right)f′′(xi).

4. Dựa vào dấu của f''\left(x_i\right)f′′(xi) suy ra tính chất cực trị của điểm x_ixi.

 

Luyện tập

 
 
 

Tìm các điểm cực trị của hàm số y=\dfrac{x^4}{4}-2x^2+6y=4x42x2+6.

Giải:

Hàm số xác định với mọi x\in\mathbb{R}xR.

f'\left(x\right)=x^3-4x=x\left(x^2-4\right)f(x)=x34x=x(x24)f'\left(x\right)=0\Leftrightarrow\left[{}\begin{aligned}x_1=0\\x_2=-2\\x_3=2\end{aligned}\right.f(x)=0x1=0x2=2x3=2

f''\left(x\right)=3x^2-4f′′(x)=3x24.

Với x_1=0x1=0 ta có f''\left(0\right)f′′(0) <> 0 \Rightarrow x_0=0x0=0 là điểm cực tiểucực đại.

Với x_2=-2x2=2 ta có f''\left(-2\right)f′′(2) <> 0 \Rightarrow x_2=-2x2=2 là điểm cực tiểucực đại.

Kiểm tra
4
14 tháng 10 2021

làm thế này thì chết mất

14 tháng 10 2021

độc kéo xuống thôi cũng lâu nx

I. Tính đơn điệu của hàm sốHãy hoàn thành 2 câu hỏi dưới đây để nhớ lại kiến thức cũ đã học:Luyện tập   Cho đồ thị hàm số y=\cos xy=cosx như hình vẽ sau:Hàm số giảm trong khoảng nào dưới đây?(0;\pi)(0;π)(-\dfrac{\pi}{2};0)(−2π​;0)(\pi;\dfrac{3\pi}{2})(π;23π​)(-\dfrac{\pi}{2};\dfrac{\pi}{2})(−2π​;2π​)Kiểm tra1. Định nghĩa:Kí hiệu K là khoảng hoặc đoạn hoặc nửa khoảng. Giả sử...
Đọc tiếp

I. Tính đơn điệu của hàm số

Hãy hoàn thành 2 câu hỏi dưới đây để nhớ lại kiến thức cũ đã học:

Luyện tập

 
 
 

Cho đồ thị hàm số y=\cos xy=cosx như hình vẽ sau:

Hàm số giảm trong khoảng nào dưới đây?

(0;\pi)(0;π)
(-\dfrac{\pi}{2};0)(2π;0)
(\pi;\dfrac{3\pi}{2})(π;23π)
(-\dfrac{\pi}{2};\dfrac{\pi}{2})(2π;2π)
Kiểm tra

1. Định nghĩa:

Kí hiệu K là khoảng hoặc đoạn hoặc nửa khoảng. Giả sử hàm số y=f\left(x\right)y=f(x) xác định trên K. Ta nói

Hàm số y=f\left(x\right)y=f(x) đồng biến (tăng) trên KK nếu với mọi cặp x_1,x_2\in Kx1,x2K mà x_1< x_2x1<x2 thì f\left(x_1\right)< f\left(x_2\right)f(x1)<f(x2);

Hàm số y=f\left(x\right)y=f(x) nghịch biến (giảm) trên KK nếu với mọi cặp  mà x_1,x_2\in Kx1,x2K mà x_1< x_2x1<x2  thì f\left(x_1\right)>f\left(x_2\right)f(x1)>f(x2).

Hàm số đồng biến hoặc nghịch biến trên KK được gọi chung là hàm số đơn điệu trên KK.

Nhận xét: Từ định nghĩa trên ta thấy:

a) f\left(x\right)f(x) đồng biến trên KK \Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}>0,\forall x_1,x_2\in Kx2x1f(x2)f(x1)>0,x1,x2K (x_1\ne x_2x1=x2);

    f\left(x\right)f(x) nghịch biến trên KK   ​\Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}< 0,\forall x_1,x_2\in Kx2x1f(x2)f(x1)<0,x1,x2K​ (x_1\ne x_2x1=x2).

b) Nếu hàm số đồng biến trên K thì đồ thị đi lên từ trái sang phải (hình a);

    Nếu hàm số nghịch biến trên K thì đồ thị đi xuống từ trái sang phải (hình b).

         

2) Tính đơn điệu và dấu của đạo hàm

 

Luyện tập

 
 
 

Cho hàm số y=-\dfrac{x^2}{2}y=2x2 với đồ thị như sau. Hàm số có đạo hàm y'=-xy=x

Trên khoảng \left(-\infty;0\right)(;0) đạo hàm mang dấu dươngâm , hàm số đồng biếnnghịch biến.

Trên khoảng \left(0;+\infty\right)(0;+) đạo hàm mang dấu dươngâm, hàm số đồng biếnnghịch biến.

Kiểm tra

 

Định lý: Cho hàm số y=f\left(x\right)y=f(x) có đạo hàm trên K.

a) Nếu f'\left(x\right)>0f(x)>0 với mọi xx thuộc K thì hàm số f\left(x\right)f(x) đồng biến trên K.

b) Nếu f'\left(x\right)< 0f(x)<0 với mọi xx thuộc K thì hàm số nghịch biến trên K.

 

Luyện tập

 
 
 

Xét hàm số y=\sin xy=sinx trên khoảng \left(0;2\pi\right)(0;2π) có đạo hàm và bảng biến thiên như sau:

Hàm số y=\sin xy=sinx đồng biến trên những khoảng nào dưới đây?

\left(\dfrac{\pi}{2};\dfrac{3\pi}{2}\right)(2π;23π)
\left(0;\dfrac{3\pi}{2}\right)(0;23π)
\left(0;\dfrac{\pi}{2}\right)(0;2π)
\left(\dfrac{3\pi}{2};2\pi\right)(23π;2π)
Kiểm tra

 

Định lý mở rộng: Giả sử hàm số y=f\left(x\right)y=f(x) có đạo hàm trên K. Nếu f'\left(x\right)\ge0f(x)0 (hoặc f'\left(x\right)\le0f(x)0), \forall x\in KxK và f'\left(x\right)=0f(x)=0 chỉ tại một số hữu hạn điểm thì hàm số đồng biến (hoặc nghịch biến) trên K.

Ví dụ: hàm số y=2x^3+6x^2+6x-7y=2x3+6x2+6x7 có đạo hàm y'=6x^2+12x+6=6\left(x+1\right)^2\ge0,\forall x\in\mathbb{R}y=6x2+12x+6=6(x+1)20,xR. Vậy hàm số đồng biến trên \mathbb{R}R.

II. Qui tắc xét tính đơn điệu của hàm số

Qui tắc:

1. Tìm tập xác định

2. Tính đạo f'\left(x\right)f(x). Tìm các điểm x_1,x_2,...,x_nx1,x2,...,xn mà tại đó đạo hàm bằng 0 hoặc không xác định.

3. Sắp xếp các điểm x_1,x_2,...,x_nx1,x2,...,xn theo thứ tự tăng dần và lập bảng biến thiên.

4. Rút ra kết luận về các khoảng đồng biến, nghịch biến của hàm số.

 

Luyện tập

 
 
 

Xét sự đồng biến, nghịch biến của hàm số y=\dfrac{1}{3}x^3-\dfrac{1}{2}x^2-2x+2y=31x321x22x+2.

1) Tập xác định: \mathbb{R}R.

2) y'=x^2-x-2y=x2x2y'=0\Leftrightarrow\left[{}\begin{aligned}x=-1\\x=2\end{aligned}\right.y=0[x=1x=2

3) Bảng biến thiên

    

4) Rút ra kết luận:

 Hàm số đồng biếnnghịch biến trên các khoảng \left(-\infty;-1\right)(;1) và \left(2;+\infty\right)(2;+).

 Hàm số đồng biếnnghịch biến trên khoản \left(-1;2\right)(1;2).

 

sdddssKiểm tra

I. Tính đơn điệu của hàm số

Hãy hoàn thành 2 câu hỏi dưới đây để nhớ lại kiến thức cũ đã học:

Luyện tập

 
 
 

Cho đồ thị hàm số y=\cos xy=cosx như hình vẽ sau:

Hàm số giảm trong khoảng nào dưới đây?

(0;\pi)(0;π)
(-\dfrac{\pi}{2};0)(2π;0)
(\pi;\dfrac{3\pi}{2})(π;23π)
(-\dfrac{\pi}{2};\dfrac{\pi}{2})(2π;2π)
Kiểm tra

1. Định nghĩa:

Kí hiệu K là khoảng hoặc đoạn hoặc nửa khoảng. Giả sử hàm số y=f\left(x\right)y=f(x) xác định trên K. Ta nói

Hàm số y=f\left(x\right)y=f(x) đồng biến (tăng) trên KK nếu với mọi cặp x_1,x_2\in Kx1,x2K mà x_1< x_2x1<x2 thì f\left(x_1\right)< f\left(x_2\right)f(x1)<f(x2);

Hàm số y=f\left(x\right)y=f(x) nghịch biến (giảm) trên KK nếu với mọi cặp  mà x_1,x_2\in Kx1,x2K mà x_1< x_2x1<x2  thì f\left(x_1\right)>f\left(x_2\right)f(x1)>f(x2).

Hàm số đồng biến hoặc nghịch biến trên KK được gọi chung là hàm số đơn điệu trên KK.

Nhận xét: Từ định nghĩa trên ta thấy:

a) f\left(x\right)f(x) đồng biến trên KK \Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}>0,\forall x_1,x_2\in Kx2x1f(x2)f(x1)>0,x1,x2K (x_1\ne x_2x1=x2);

    f\left(x\right)f(x) nghịch biến trên KK   ​\Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}< 0,\forall x_1,x_2\in Kx2x1f(x2)f(x1)<0,x1,x2K​ (x_1\ne x_2x1=x2).

b) Nếu hàm số đồng biến trên K thì đồ thị đi lên từ trái sang phải (hình a);

    Nếu hàm số nghịch biến trên K thì đồ thị đi xuống từ trái sang phải (hình b).

         

2) Tính đơn điệu và dấu của đạo hàm

 

Luyện tập

 
 
 

Cho hàm số y=-\dfrac{x^2}{2}y=2x2 với đồ thị như sau. Hàm số có đạo hàm y'=-xy=x

Trên khoảng \left(-\infty;0\right)(;0) đạo hàm mang dấu dươngâm , hàm số đồng biếnnghịch biến.

Trên khoảng \left(0;+\infty\right)(0;+) đạo hàm mang dấu dươngâm, hàm số đồng biếnnghịch biến.

Kiểm tra

 

Định lý: Cho hàm số y=f\left(x\right)y=f(x) có đạo hàm trên K.

a) Nếu f'\left(x\right)>0f(x)>0 với mọi xx thuộc K thì hàm số f\left(x\right)f(x) đồng biến trên K.

b) Nếu f'\left(x\right)< 0f(x)<0 với mọi xx thuộc K thì hàm số nghịch biến trên K.

 

Luyện tập

 
 
 

Xét hàm số y=\sin xy=sinx trên khoảng \left(0;2\pi\right)(0;2π) có đạo hàm và bảng biến thiên như sau:

Hàm số y=\sin xy=sinx đồng biến trên những khoảng nào dưới đây?

\left(\dfrac{\pi}{2};\dfrac{3\pi}{2}\right)(2π;23π)
\left(0;\dfrac{3\pi}{2}\right)(0;23π)
\left(0;\dfrac{\pi}{2}\right)(0;2π)
\left(\dfrac{3\pi}{2};2\pi\right)(23π;2π)
Kiểm tra

 

Định lý mở rộng: Giả sử hàm số y=f\left(x\right)y=f(x) có đạo hàm trên K. Nếu f'\left(x\right)\ge0f(x)0 (hoặc f'\left(x\right)\le0f(x)0), \forall x\in KxK và f'\left(x\right)=0f(x)=0 chỉ tại một số hữu hạn điểm thì hàm số đồng biến (hoặc nghịch biến) trên K.

Ví dụ: hàm số y=2x^3+6x^2+6x-7y=2x3+6x2+6x7 có đạo hàm y'=6x^2+12x+6=6\left(x+1\right)^2\ge0,\forall x\in\mathbb{R}y=6x2+12x+6=6(x+1)20,xR. Vậy hàm số đồng biến trên \mathbb{R}R.

II. Qui tắc xét tính đơn điệu của hàm số

Qui tắc:

1. Tìm tập xác định

2. Tính đạo f'\left(x\right)f(x). Tìm các điểm x_1,x_2,...,x_nx1,x2,...,xn mà tại đó đạo hàm bằng 0 hoặc không xác định.

3. Sắp xếp các điểm x_1,x_2,...,x_nx1,x2,...,xn theo thứ tự tăng dần và lập bảng biến thiên.

4. Rút ra kết luận về các khoảng đồng biến, nghịch biến của hàm số.

 

Luyện tập

 
 
 

Xét sự đồng biến, nghịch biến của hàm số y=\dfrac{1}{3}x^3-\dfrac{1}{2}x^2-2x+2y=31x321x22x+2.

1) Tập xác định: \mathbb{R}R.

2) y'=x^2-x-2y=x2x2y'=0\Leftrightarrow\left[{}\begin{aligned}x=-1\\x=2\end{aligned}\right.y=0[x=1x=2

3) Bảng biến thiên

    

4) Rút ra kết luận:

 Hàm số đồng biếnnghịch biến trên các khoảng \left(-\infty;-1\right)(;1) và \left(2;+\infty\right)(2;+).

 Hàm số đồng biếnnghịch biến trên khoản \left(-1;2\right)(1;2).

 

Kiểm tra

 

I. Tính đơn điệu của hàm số

Hãy hoàn thành 2 câu hỏi dưới đây để nhớ lại kiến thức cũ đã học:

Luyện tập

 
 
 

Cho đồ thị hàm số y=\cos xy=cosx như hình vẽ sau:

Hàm số giảm trong khoảng nào dưới đây?

(0;\pi)(0;π)
(-\dfrac{\pi}{2};0)(2π;0)
(\pi;\dfrac{3\pi}{2})(π;23π)
(-\dfrac{\pi}{2};\dfrac{\pi}{2})(2π;2π)
Kiểm tra

1. Định nghĩa:

Kí hiệu K là khoảng hoặc đoạn hoặc nửa khoảng. Giả sử hàm số y=f\left(x\right)y=f(x) xác định trên K. Ta nói

Hàm số y=f\left(x\right)y=f(x) đồng biến (tăng) trên KK nếu với mọi cặp x_1,x_2\in Kx1,x2K mà x_1< x_2x1<x2 thì f\left(x_1\right)< f\left(x_2\right)f(x1)<f(x2);

Hàm số y=f\left(x\right)y=f(x) nghịch biến (giảm) trên KK nếu với mọi cặp  mà x_1,x_2\in Kx1,x2K mà x_1< x_2x1<x2  thì f\left(x_1\right)>f\left(x_2\right)f(x1)>f(x2).

Hàm số đồng biến hoặc nghịch biến trên KK được gọi chung là hàm số đơn điệu trên KK.

Nhận xét: Từ định nghĩa trên ta thấy:

a) f\left(x\right)f(x) đồng biến trên KK \Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}>0,\forall x_1,x_2\in Kx2x1f(x2)f(x1)>0,x1,x2K (x_1\ne x_2x1=x2);

    f\left(x\right)f(x) nghịch biến trên KK   ​\Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}< 0,\forall x_1,x_2\in Kx2x1f(x2)f(x1)<0,x1,x2K​ (x_1\ne x_2x1=x2).

b) Nếu hàm số đồng biến trên K thì đồ thị đi lên từ trái sang phải (hình a);

    Nếu hàm số nghịch biến trên K thì đồ thị đi xuống từ trái sang phải (hình b).

         

2) Tính đơn điệu và dấu của đạo hàm

 

Luyện tập

 
 
 

Cho hàm số y=-\dfrac{x^2}{2}y=2x2 với đồ thị như sau. Hàm số có đạo hàm y'=-xy=x

Trên khoảng \left(-\infty;0\right)(;0) đạo hàm mang dấu dươngâm , hàm số đồng biếnnghịch biến.

Trên khoảng \left(0;+\infty\right)(0;+) đạo hàm mang dấu dươngâm, hàm số đồng biếnnghịch biến.

Kiểm tra

 

Định lý: Cho hàm số y=f\left(x\right)y=f(x) có đạo hàm trên K.

a) Nếu f'\left(x\right)>0f(x)>0 với mọi xx thuộc K thì hàm số f\left(x\right)f(x) đồng biến trên K.

b) Nếu f'\left(x\right)< 0f(x)<0 với mọi xx thuộc K thì hàm số nghịch biến trên K.

 

Luyện tập

 
 
 

Xét hàm số y=\sin xy=sinx trên khoảng \left(0;2\pi\right)(0;2π) có đạo hàm và bảng biến thiên như sau:

Hàm số y=\sin xy=sinx đồng biến trên những khoảng nào dưới đây?

\left(\dfrac{\pi}{2};\dfrac{3\pi}{2}\right)(2π;23π)
\left(0;\dfrac{3\pi}{2}\right)(0;23π)
\left(0;\dfrac{\pi}{2}\right)(0;2π)
\left(\dfrac{3\pi}{2};2\pi\right)(23π;2π)
Kiểm tra

 

Định lý mở rộng: Giả sử hàm số y=f\left(x\right)y=f(x) có đạo hàm trên K. Nếu f'\left(x\right)\ge0f(x)0 (hoặc f'\left(x\right)\le0f(x)0), \forall x\in KxK và f'\left(x\right)=0f(x)=0 chỉ tại một số hữu hạn điểm thì hàm số đồng biến (hoặc nghịch biến) trên K.

Ví dụ: hàm số y=2x^3+6x^2+6x-7y=2x3+6x2+6x7 có đạo hàm y'=6x^2+12x+6=6\left(x+1\right)^2\ge0,\forall x\in\mathbb{R}y=6x2+12x+6=6(x+1)20,xR. Vậy hàm số đồng biến trên \mathbb{R}R.

II. Qui tắc xét tính đơn điệu của hàm số

Qui tắc:

1. Tìm tập xác định

2. Tính đạo f'\left(x\right)f(x). Tìm các điểm x_1,x_2,...,x_nx1,x2,...,xn mà tại đó đạo hàm bằng 0 hoặc không xác định.

3. Sắp xếp các điểm x_1,x_2,...,x_nx1,x2,...,xn theo thứ tự tăng dần và lập bảng biến thiên.

4. Rút ra kết luận về các khoảng đồng biến, nghịch biến của hàm số.

 

Luyện tập

 
 
 

Xét sự đồng biến, nghịch biến của hàm số y=\dfrac{1}{3}x^3-\dfrac{1}{2}x^2-2x+2y=31x321x22x+2.

1) Tập xác định: \mathbb{R}R.

2) y'=x^2-x-2y=x2x2y'=0\Leftrightarrow\left[{}\begin{aligned}x=-1\\x=2\end{aligned}\right.y=0[x=1x=2

3) Bảng biến thiên

    

4) Rút ra kết luận:

 Hàm số đồng biếnnghịch biến trên các khoảng \left(-\infty;-1\right)(;1) và \left(2;+\infty\right)(2;+).

 Hàm số đồng biếnnghịch biến trên khoản \left(-1;2\right)(1;2).

 

Kiểm tra

 

I. Tính đơn điệu của hàm số

Hãy hoàn thành 2 câu hỏi dưới đây để nhớ lại kiến thức cũ đã học:

Luyện tập

 
 
 

Cho đồ thị hàm số y=\cos xy=cosx như hình vẽ sau:

Hàm số giảm trong khoảng nào dưới đây?

(0;\pi)(0;π)
(-\dfrac{\pi}{2};0)(2π;0)
(\pi;\dfrac{3\pi}{2})(π;23π)
(-\dfrac{\pi}{2};\dfrac{\pi}{2})(2π;2π)
Kiểm tra

1. Định nghĩa:

Kí hiệu K là khoảng hoặc đoạn hoặc nửa khoảng. Giả sử hàm số y=f\left(x\right)y=f(x) xác định trên K. Ta nói

Hàm số y=f\left(x\right)y=f(x) đồng biến (tăng) trên KK nếu với mọi cặp x_1,x_2\in Kx1,x2K mà x_1< x_2x1<x2 thì f\left(x_1\right)< f\left(x_2\right)f(x1)<f(x2);

Hàm số y=f\left(x\right)y=f(x) nghịch biến (giảm) trên KK nếu với mọi cặp  mà x_1,x_2\in Kx1,x2K mà x_1< x_2x1<x2  thì f\left(x_1\right)>f\left(x_2\right)f(x1)>f(x2).

Hàm số đồng biến hoặc nghịch biến trên KK được gọi chung là hàm số đơn điệu trên KK.

Nhận xét: Từ định nghĩa trên ta thấy:

a) f\left(x\right)f(x) đồng biến trên KK \Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}>0,\forall x_1,x_2\in Kx2x1f(x2)f(x1)>0,x1,x2K (x_1\ne x_2x1=x2);

    f\left(x\right)f(x) nghịch biến trên KK   ​\Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}< 0,\forall x_1,x_2\in Kx2x1f(x2)f(x1)<0,x1,x2K​ (x_1\ne x_2x1=x2).

b) Nếu hàm số đồng biến trên K thì đồ thị đi lên từ trái sang phải (hình a);

    Nếu hàm số nghịch biến trên K thì đồ thị đi xuống từ trái sang phải (hình b).

         

2) Tính đơn điệu và dấu của đạo hàm

 

Luyện tập

 
 
 

Cho hàm số y=-\dfrac{x^2}{2}y=2x2 với đồ thị như sau. Hàm số có đạo hàm y'=-xy=x

Trên khoảng \left(-\infty;0\right)(;0) đạo hàm mang dấu dươngâm , hàm số đồng biếnnghịch biến.

Trên khoảng \left(0;+\infty\right)(0;+) đạo hàm mang dấu dươngâm, hàm số đồng biếnnghịch biến.

Kiểm tra

 

Định lý: Cho hàm số y=f\left(x\right)y=f(x) có đạo hàm trên K.

a) Nếu f'\left(x\right)>0f(x)>0 với mọi xx thuộc K thì hàm số f\left(x\right)f(x) đồng biến trên K.

b) Nếu f'\left(x\right)< 0f(x)<0 với mọi xx thuộc K thì hàm số nghịch biến trên K.

 

Luyện tập

 
 
 

Xét hàm số y=\sin xy=sinx trên khoảng \left(0;2\pi\right)(0;2π) có đạo hàm và bảng biến thiên như sau:

Hàm số y=\sin xy=sinx đồng biến trên những khoảng nào dưới đây?

\left(\dfrac{\pi}{2};\dfrac{3\pi}{2}\right)(2π;23π)
\left(0;\dfrac{3\pi}{2}\right)(0;23π)
\left(0;\dfrac{\pi}{2}\right)(0;2π)
\left(\dfrac{3\pi}{2};2\pi\right)(23π;2π)
Kiểm tra

 

Định lý mở rộng: Giả sử hàm số y=f\left(x\right)y=f(x) có đạo hàm trên K. Nếu f'\left(x\right)\ge0f(x)0 (hoặc f'\left(x\right)\le0f(x)0), \forall x\in KxK và f'\left(x\right)=0f(x)=0 chỉ tại một số hữu hạn điểm thì hàm số đồng biến (hoặc nghịch biến) trên K.

Ví dụ: hàm số y=2x^3+6x^2+6x-7y=2x3+6x2+6x7 có đạo hàm y'=6x^2+12x+6=6\left(x+1\right)^2\ge0,\forall x\in\mathbb{R}y=6x2+12x+6=6(x+1)20,xR. Vậy hàm số đồng biến trên \mathbb{R}R.

II. Qui tắc xét tính đơn điệu của hàm số

Qui tắc:

1. Tìm tập xác định

2. Tính đạo f'\left(x\right)f(x). Tìm các điểm x_1,x_2,...,x_nx1,x2,...,xn mà tại đó đạo hàm bằng 0 hoặc không xác định.

3. Sắp xếp các điểm x_1,x_2,...,x_nx1,x2,...,xn theo thứ tự tăng dần và lập bảng biến thiên.

4. Rút ra kết luận về các khoảng đồng biến, nghịch biến của hàm số.

 

Luyện tập

 
 
 

Xét sự đồng biến, nghịch biến của hàm số y=\dfrac{1}{3}x^3-\dfrac{1}{2}x^2-2x+2y=31x321x22x+2.

1) Tập xác định: \mathbb{R}R.

2) y'=x^2-x-2y=x2x2y'=0\Leftrightarrow\left[{}\begin{aligned}x=-1\\x=2\end{aligned}\right.y=0[x=1x=2

3) Bảng biến thiên

    

4) Rút ra kết luận:

 Hàm số đồng biếnnghịch biến trên các khoảng \left(-\infty;-1\right)(;1) và \left(2;+\infty\right)(2;+).

 Hàm số đồng biếnnghịch biến trên khoản \left(-1;2\right)(1;2).

 

Kiểm tra

 

I. Tính đơn điệu của hàm số

Hãy hoàn thành 2 câu hỏi dưới đây để nhớ lại kiến thức cũ đã học:

Luyện tập

 
 
 

Cho đồ thị hàm số y=\cos xy=cosx như hình vẽ sau:

Hàm số giảm trong khoảng nào dưới đây?

(0;\pi)(0;π)
(-\dfrac{\pi}{2};0)(2π;0)
(\pi;\dfrac{3\pi}{2})(π;23π)
(-\dfrac{\pi}{2};\dfrac{\pi}{2})(2π;2π)
Kiểm tra

1. Định nghĩa:

Kí hiệu K là khoảng hoặc đoạn hoặc nửa khoảng. Giả sử hàm số y=f\left(x\right)y=f(x) xác định trên K. Ta nói

Hàm số y=f\left(x\right)y=f(x) đồng biến (tăng) trên KK nếu với mọi cặp x_1,x_2\in Kx1,x2K mà x_1< x_2x1<x2 thì f\left(x_1\right)< f\left(x_2\right)f(x1)<f(x2);

Hàm số y=f\left(x\right)y=f(x) nghịch biến (giảm) trên KK nếu với mọi cặp  mà x_1,x_2\in Kx1,x2K mà x_1< x_2x1<x2  thì f\left(x_1\right)>f\left(x_2\right)f(x1)>f(x2).

Hàm số đồng biến hoặc nghịch biến trên KK được gọi chung là hàm số đơn điệu trên KK.

Nhận xét: Từ định nghĩa trên ta thấy:

a) f\left(x\right)f(x) đồng biến trên KK \Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}>0,\forall x_1,x_2\in Kx2x1f(x2)f(x1)>0,x1,x2K (x_1\ne x_2x1=x2);

    f\left(x\right)f(x) nghịch biến trên KK   ​\Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}< 0,\forall x_1,x_2\in Kx2x1f(x2)f(x1)<0,x1,x2K​ (x_1\ne x_2x1=x2).

b) Nếu hàm số đồng biến trên K thì đồ thị đi lên từ trái sang phải (hình a);

    Nếu hàm số nghịch biến trên K thì đồ thị đi xuống từ trái sang phải (hình b).

         

2) Tính đơn điệu và dấu của đạo hàm

 

Luyện tập

 
 
 

Cho hàm số y=-\dfrac{x^2}{2}y=2x2 với đồ thị như sau. Hàm số có đạo hàm y'=-xy=x

Trên khoảng \left(-\infty;0\right)(;0) đạo hàm mang dấu dươngâm , hàm số đồng biếnnghịch biến.

Trên khoảng \left(0;+\infty\right)(0;+) đạo hàm mang dấu dươngâm, hàm số đồng biếnnghịch biến.

Kiểm tra

 

Định lý: Cho hàm số y=f\left(x\right)y=f(x) có đạo hàm trên K.

a) Nếu f'\left(x\right)>0f(x)>0 với mọi xx thuộc K thì hàm số f\left(x\right)f(x) đồng biến trên K.

b) Nếu f'\left(x\right)< 0f(x)<0 với mọi xx thuộc K thì hàm số nghịch biến trên K.

 

Luyện tập

 
 
 

Xét hàm số y=\sin xy=sinx trên khoảng \left(0;2\pi\right)(0;2π) có đạo hàm và bảng biến thiên như sau:

Hàm số y=\sin xy=sinx đồng biến trên những khoảng nào dưới đây?

\left(\dfrac{\pi}{2};\dfrac{3\pi}{2}\right)(2π;23π)
\left(0;\dfrac{3\pi}{2}\right)(0;23π)
\left(0;\dfrac{\pi}{2}\right)(0;2π)
\left(\dfrac{3\pi}{2};2\pi\right)(23π;2π)
Kiểm tra

 

Định lý mở rộng: Giả sử hàm số y=f\left(x\right)y=f(x) có đạo hàm trên K. Nếu f'\left(x\right)\ge0f(x)0 (hoặc f'\left(x\right)\le0f(x)0), \forall x\in KxK và f'\left(x\right)=0f(x)=0 chỉ tại một số hữu hạn điểm thì hàm số đồng biến (hoặc nghịch biến) trên K.

Ví dụ: hàm số y=2x^3+6x^2+6x-7y=2x3+6x2+6x7 có đạo hàm y'=6x^2+12x+6=6\left(x+1\right)^2\ge0,\forall x\in\mathbb{R}y=6x2+12x+6=6(x+1)20,xR. Vậy hàm số đồng biến trên \mathbb{R}R.

II. Qui tắc xét tính đơn điệu của hàm số

Qui tắc:

1. Tìm tập xác định

2. Tính đạo f'\left(x\right)f(x). Tìm các điểm x_1,x_2,...,x_nx1,x2,...,xn mà tại đó đạo hàm bằng 0 hoặc không xác định.

3. Sắp xếp các điểm x_1,x_2,...,x_nx1,x2,...,xn theo thứ tự tăng dần và lập bảng biến thiên.

4. Rút ra kết luận về các khoảng đồng biến, nghịch biến của hàm số.

 

Luyện tập

 
 
 

Xét sự đồng biến, nghịch biến của hàm số y=\dfrac{1}{3}x^3-\dfrac{1}{2}x^2-2x+2y=31x321x22x+2.

1) Tập xác định: \mathbb{R}R.

2) y'=x^2-x-2y=x2x2y'=0\Leftrightarrow\left[{}\begin{aligned}x=-1\\x=2\end{aligned}\right.y=0[x=1x=2

3) Bảng biến thiên

    

4) Rút ra kết luận:

 Hàm số đồng biếnnghịch biến trên các khoảng \left(-\infty;-1\right)(;1) và \left(2;+\infty\right)(2;+).

 Hàm số đồng biếnnghịch biến trên khoản \left(-1;2\right)(1;2).

 

Kiểm tra

 

I. Tính đơn điệu của hàm số

Hãy hoàn thành 2 câu hỏi dưới đây để nhớ lại kiến thức cũ đã học:

Luyện tập

 
 
 

Cho đồ thị hàm số y=\cos xy=cosx như hình vẽ sau:

Hàm số giảm trong khoảng nào dưới đây?

(0;\pi)(0;π)
(-\dfrac{\pi}{2};0)(2π;0)
(\pi;\dfrac{3\pi}{2})(π;23π)
(-\dfrac{\pi}{2};\dfrac{\pi}{2})(2π;2π)
Kiểm tra

1. Định nghĩa:

Kí hiệu K là khoảng hoặc đoạn hoặc nửa khoảng. Giả sử hàm số y=f\left(x\right)y=f(x) xác định trên K. Ta nói

Hàm số y=f\left(x\right)y=f(x) đồng biến (tăng) trên KK nếu với mọi cặp x_1,x_2\in Kx1,x2K mà x_1< x_2x1<x2 thì f\left(x_1\right)< f\left(x_2\right)f(x1)<f(x2);

Hàm số y=f\left(x\right)y=f(x) nghịch biến (giảm) trên KK nếu với mọi cặp  mà x_1,x_2\in Kx1,x2K mà x_1< x_2x1<x2  thì f\left(x_1\right)>f\left(x_2\right)f(x1)>f(x2).

Hàm số đồng biến hoặc nghịch biến trên KK được gọi chung là hàm số đơn điệu trên KK.

Nhận xét: Từ định nghĩa trên ta thấy:

a) f\left(x\right)f(x) đồng biến trên KK \Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}>0,\forall x_1,x_2\in Kx2x1f(x2)f(x1)>0,x1,x2K (x_1\ne x_2x1=x2);

    f\left(x\right)f(x) nghịch biến trên KK   ​\Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}< 0,\forall x_1,x_2\in Kx2x1f(x2)f(x1)<0,x1,x2K​ (x_1\ne x_2x1=x2).

b) Nếu hàm số đồng biến trên K thì đồ thị đi lên từ trái sang phải (hình a);

    Nếu hàm số nghịch biến trên K thì đồ thị đi xuống từ trái sang phải (hình b).

         

2) Tính đơn điệu và dấu của đạo hàm

 

Luyện tập

 
 
 

Cho hàm số y=-\dfrac{x^2}{2}y=2x2 với đồ thị như sau. Hàm số có đạo hàm y'=-xy=x

Trên khoảng \left(-\infty;0\right)(;0) đạo hàm mang dấu dươngâm , hàm số đồng biếnnghịch biến.

Trên khoảng \left(0;+\infty\right)(0;+) đạo hàm mang dấu dươngâm, hàm số đồng biếnnghịch biến.

Kiểm tra

 

Định lý: Cho hàm số y=f\left(x\right)y=f(x) có đạo hàm trên K.

a) Nếu f'\left(x\right)>0f(x)>0 với mọi xx thuộc K thì hàm số f\left(x\right)f(x) đồng biến trên K.

b) Nếu f'\left(x\right)< 0f(x)<0 với mọi xx thuộc K thì hàm số nghịch biến trên K.

 

Luyện tập

 
 
 

Xét hàm số y=\sin xy=sinx trên khoảng \left(0;2\pi\right)(0;2π) có đạo hàm và bảng biến thiên như sau:

Hàm số y=\sin xy=sinx đồng biến trên những khoảng nào dưới đây?

\left(\dfrac{\pi}{2};\dfrac{3\pi}{2}\right)(2π;23π)
\left(0;\dfrac{3\pi}{2}\right)(0;23π)
\left(0;\dfrac{\pi}{2}\right)(0;2π)
\left(\dfrac{3\pi}{2};2\pi\right)(23π;2π)
Kiểm tra

 

Định lý mở rộng: Giả sử hàm số y=f\left(x\right)y=f(x) có đạo hàm trên K. Nếu f'\left(x\right)\ge0f(x)0 (hoặc f'\left(x\right)\le0f(x)0), \forall x\in KxK và f'\left(x\right)=0f(x)=0 chỉ tại một số hữu hạn điểm thì hàm số đồng biến (hoặc nghịch biến) trên K.

Ví dụ: hàm số y=2x^3+6x^2+6x-7y=2x3+6x2+6x7 có đạo hàm y'=6x^2+12x+6=6\left(x+1\right)^2\ge0,\forall x\in\mathbb{R}y=6x2+12x+6=6(x+1)20,xR. Vậy hàm số đồng biến trên \mathbb{R}R.

II. Qui tắc xét tính đơn điệu của hàm số

Qui tắc:

1. Tìm tập xác định

2. Tính đạo f'\left(x\right)f(x). Tìm các điểm x_1,x_2,...,x_nx1,x2,...,xn mà tại đó đạo hàm bằng 0 hoặc không xác định.

3. Sắp xếp các điểm x_1,x_2,...,x_nx1,x2,...,xn theo thứ tự tăng dần và lập bảng biến thiên.

4. Rút ra kết luận về các khoảng đồng biến, nghịch biến của hàm số.

 

Luyện tập

 
 
 

Xét sự đồng biến, nghịch biến của hàm số y=\dfrac{1}{3}x^3-\dfrac{1}{2}x^2-2x+2y=31x321x22x+2.

1) Tập xác định: \mathbb{R}R.

2) y'=x^2-x-2y=x2x2y'=0\Leftrightarrow\left[{}\begin{aligned}x=-1\\x=2\end{aligned}\right.y=0[x=1x=2

3) Bảng biến thiên

    

4) Rút ra kết luận:

 Hàm số đồng biếnnghịch biến trên các khoảng \left(-\infty;-1\right)(;1) và \left(2;+\infty\right)(2;+).

 Hàm số đồng biếnnghịch biến trên khoản \left(-1;2\right)(1;2).

 

Kiểm tra

 

I. Tính đơn điệu của hàm số

Hãy hoàn thành 2 câu hỏi dưới đây để nhớ lại kiến thức cũ đã học:

Luyện tập

 
 
 

Cho đồ thị hàm số y=\cos xy=cosx như hình vẽ sau:

Hàm số giảm trong khoảng nào dưới đây?

(0;\pi)(0;π)
(-\dfrac{\pi}{2};0)(2π;0)
(\pi;\dfrac{3\pi}{2})(π;23π)
(-\dfrac{\pi}{2};\dfrac{\pi}{2})(2π;2π)
Kiểm tra

1. Định nghĩa:

Kí hiệu K là khoảng hoặc đoạn hoặc nửa khoảng. Giả sử hàm số y=f\left(x\right)y=f(x) xác định trên K. Ta nói

Hàm số y=f\left(x\right)y=f(x) đồng biến (tăng) trên KK nếu với mọi cặp x_1,x_2\in Kx1,x2K mà x_1< x_2x1<x2 thì f\left(x_1\right)< f\left(x_2\right)f(x1)<f(x2);

Hàm số y=f\left(x\right)y=f(x) nghịch biến (giảm) trên KK nếu với mọi cặp  mà x_1,x_2\in Kx1,x2K mà x_1< x_2x1<x2  thì f\left(x_1\right)>f\left(x_2\right)f(x1)>f(x2).

Hàm số đồng biến hoặc nghịch biến trên KK được gọi chung là hàm số đơn điệu trên KK.

Nhận xét: Từ định nghĩa trên ta thấy:

a) f\left(x\right)f(x) đồng biến trên KK \Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}>0,\forall x_1,x_2\in Kx2x1f(x2)f(x1)>0,x1,x2K (x_1\ne x_2x1=x2);

    f\left(x\right)f(x) nghịch biến trên KK   ​\Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}< 0,\forall x_1,x_2\in Kx2x1f(x2)f(x1)<0,x1,x2K​ (x_1\ne x_2x1=x2).

b) Nếu hàm số đồng biến trên K thì đồ thị đi lên từ trái sang phải (hình a);

    Nếu hàm số nghịch biến trên K thì đồ thị đi xuống từ trái sang phải (hình b).

         

2) Tính đơn điệu và dấu của đạo hàm

 

Luyện tập

 
 
 

Cho hàm số y=-\dfrac{x^2}{2}y=2x2 với đồ thị như sau. Hàm số có đạo hàm y'=-xy=x

Trên khoảng \left(-\infty;0\right)(;0) đạo hàm mang dấu dươngâm , hàm số đồng biếnnghịch biến.

Trên khoảng \left(0;+\infty\right)(0;+) đạo hàm mang dấu dươngâm, hàm số đồng biếnnghịch biến.

Kiểm tra

 

Định lý: Cho hàm số y=f\left(x\right)y=f(x) có đạo hàm trên K.

a) Nếu f'\left(x\right)>0f(x)>0 với mọi xx thuộc K thì hàm số f\left(x\right)f(x) đồng biến trên K.

b) Nếu f'\left(x\right)< 0f(x)<0 với mọi xx thuộc K thì hàm số nghịch biến trên K.

 

Luyện tập

 
 
 

Xét hàm số y=\sin xy=sinx trên khoảng \left(0;2\pi\right)(0;2π) có đạo hàm và bảng biến thiên như sau:

Hàm số y=\sin xy=sinx đồng biến trên những khoảng nào dưới đây?

\left(\dfrac{\pi}{2};\dfrac{3\pi}{2}\right)(2π;23π)
\left(0;\dfrac{3\pi}{2}\right)(0;23π)
\left(0;\dfrac{\pi}{2}\right)(0;2π)
\left(\dfrac{3\pi}{2};2\pi\right)(23π;2π)
Kiểm tra

 

Định lý mở rộng: Giả sử hàm số y=f\left(x\right)y=f(x) có đạo hàm trên K. Nếu f'\left(x\right)\ge0f(x)0 (hoặc f'\left(x\right)\le0f(x)0), \forall x\in KxK và f'\left(x\right)=0f(x)=0 chỉ tại một số hữu hạn điểm thì hàm số đồng biến (hoặc nghịch biến) trên K.

Ví dụ: hàm số y=2x^3+6x^2+6x-7y=2x3+6x2+6x7 có đạo hàm y'=6x^2+12x+6=6\left(x+1\right)^2\ge0,\forall x\in\mathbb{R}y=6x2+12x+6=6(x+1)20,xR. Vậy hàm số đồng biến trên \mathbb{R}R.

II. Qui tắc xét tính đơn điệu của hàm số

Qui tắc:

1. Tìm tập xác định

2. Tính đạo f'\left(x\right)f(x). Tìm các điểm x_1,x_2,...,x_nx1,x2,...,xn mà tại đó đạo hàm bằng 0 hoặc không xác định.

3. Sắp xếp các điểm x_1,x_2,...,x_nx1,x2,...,xn theo thứ tự tăng dần và lập bảng biến thiên.

4. Rút ra kết luận về các khoảng đồng biến, nghịch biến của hàm số.

 

Luyện tập

 
 
 

Xét sự đồng biến, nghịch biến của hàm số y=\dfrac{1}{3}x^3-\dfrac{1}{2}x^2-2x+2y=31x321x22x+2.

1) Tập xác định: \mathbb{R}R.

2) y'=x^2-x-2y=x2x2y'=0\Leftrightarrow\left[{}\begin{aligned}x=-1\\x=2\end{aligned}\right.y=0[x=1x=2

3) Bảng biến thiên

    

4) Rút ra kết luận:

 Hàm số đồng biếnnghịch biến trên các khoảng \left(-\infty;-1\right)(;1) và \left(2;+\infty\right)(2;+).

 Hàm số đồng biếnnghịch biến trên khoản \left(-1;2\right)(1;2).

 

Kiểm tra

 

4
14 tháng 10 2021

có vẻ ngắn

14 tháng 10 2021

đọc hết thanh xuân

1= f\left(x\right)f(x) đồng biến trên KK \Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}>0,\forall x_1,x_2\in K⇔x2​−x1​f(x2​)−f(x1​)​>0,∀x1​,x2​∈K (x_1\ne x_2x1​=x2​);    f\left(x\right)f(x) nghịch biến trên KK   ​\Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}< 0,\forall x_1,x_2\in K⇔x2​−x1​f(x2​)−f(x1​)​<0,∀x1​,x2​∈K​ (x_1\ne x_2x1​=x2​).b) Nếu hàm số đồng...
Đọc tiếp

1=

 f\left(x\right)f(x) đồng biến trên KK \Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}>0,\forall x_1,x_2\in Kx2x1f(x2)f(x1)>0,x1,x2K (x_1\ne x_2x1=x2);

    f\left(x\right)f(x) nghịch biến trên KK   ​\Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}< 0,\forall x_1,x_2\in Kx2x1f(x2)f(x1)<0,x1,x2K​ (x_1\ne x_2x1=x2).

b) Nếu hàm số đồng biến trên K thì đồ thị đi lên từ trái sang phải (hình a);

    Nếu hàm số nghịch biến trên K thì đồ thị đi xuống từ trái sang phải (hình b).

         

2) Tính đơn điệu và dấu của đạo hàm

 

Luyện tập

 
 
 

Cho hàm số y=-\dfrac{x^2}{2}y=2x2 với đồ thị như sau. Hàm số có đạo hàm y'=-xy=x

Trên khoảng \left(-\infty;0\right)(;0) đạo hàm mang dấu dươngâm , hàm số nghịch biếnđồng biến.

Trên khoảng \left(0;+\infty\right)(0;+) đạo hàm mang dấu dươngâm, hàm số nghịch biếnđồng biến.

Kiểm tra

 

Định lý: Cho hàm số y=f\left(x\right)y=f(x) có đạo hàm trên K.

a) Nếu f'\left(x\right)>0f(x)>0 với mọi xx thuộc K thì hàm số f\left(x\right)f(x) đồng biến trên K.

b) Nếu f'\left(x\right)< 0f(x)<0 với mọi xx thuộc K thì hàm số nghịch biến trên K.

 

Luyện tập

 
 
 

Xét hàm số y=\sin xy=sinx trên khoảng \left(0;2\pi\right)(0;2π) có đạo hàm và bảng biến thiên như sau:

Hàm số y=\sin xy=sinx đồng biến trên những khoảng nào dưới đây?

\left(0;\dfrac{\pi}{2}\right)(0;2π)
\left(\dfrac{\pi}{2};\dfrac{3\pi}{2}\right)(2π;23π)
\left(\dfrac{3\pi}{2};\pi\right)(23π;π)
\left(0;\dfrac{3\pi}{2}\right)(0;23π)
Kiểm tra

 

Định lý mở rộng: Giả sử hàm số y=f\left(x\right)y=f(x) có đạo hàm trên K. Nếu f'\left(x\right)\ge0f(x)0 (hoặc f'\left(x\right)\le0f(x)0), \forall x\in KxK và f'\left(x\right)=0f(x)=0 chỉ tại một số hữu hạn điểm thì hàm số đồng biến (hoặc nghịch biến) trên K.

Ví dụ: hàm số y=2x^3+6x^2+6x-7y=2x3+6x2+6x7 có đạo hàm y'=6x^2+12x+6=6\left(x+1\right)^2\ge0,\forall x\in\mathbb{R}y=6x2+12x+6=6(x+1)20,xR. Vậy hàm số đồng biến trên \mathbb{R}R.

II. Qui tắc xét tính đơn điệu của hàm số

Qui tắc:

1. Tìm tập xác định

2. Tính đạo f'\left(x\right)f(x). Tìm các điểm x_1,x_2,...,x_nx1,x2,...,xn mà tại đó đạo hàm bằng 0 hoặc không xác định.

3. Sắp xếp các điểm x_1,x_2,...,x_nx1,x2,...,xn theo thứ tự tăng dần và lập bảng biến thiên.

4. Rút ra kết luận về các khoảng đồng biến, nghịch biến của hàm số.

 

Luyện tập

 
 
 

Xét sự đồng biến, nghịch biến của hàm số y=\dfrac{1}{3}x^3-\dfrac{1}{2}x^2-2x+2y=31x321x22x+2.

1) Tập xác định: \mathbb{R}R.

2) y'=x^2-x-2y=x2x2y'=0\Leftrightarrow\left[{}\begin{aligned}x=-1\\x=2\end{aligned}\right.y=0[x=1x=2

3) Bảng biến thiên

    

4) Rút ra kết luận:

 Hàm số nghịch biếnđồng biến trên các khoảng \left(-\infty;-1\right)(;1) và \left(2;+\infty\right)(2;+).

 Hàm số đồng biếnnghịch biến trên khoản \left(-1;2\right)(1;2).

 

0