Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điểm cực tiểu của hàm số y = -x3 + 3x +4 là
A. x = -1
B. x = 1
C. x = -3
Điểm cực tiểu của hàm số y = -x3 + 3x +4 là
A. x = -1
B. x = 1
C. x = -3
Điểm cực tiểu của hàm số y = -x3 + 3x +4 là
A. x = -1
B. x = 1
C. x = -3
HT
Bạn tự vẽ hình nhé.
Gọi \(O\)là tâm của đường tròn ngoại tiếp tam giác \(ABC\).
Do \(SA=SB=SC\)nên \(SO\perp\left(ABC\right)\).
Gọi \(H\)là trung điểm \(BC\)thì \(AH=\sqrt{AB^2-BH^2}=\sqrt{a^2-x^2}\)
\(S_{ABC}=\frac{1}{2}AH.BC=\frac{1}{2}\sqrt{a^2-x^2}.2x=x\sqrt{a^2-x^2}\)
\(AO=\frac{AB.AC.BC}{4S_{ABC}}=\frac{a.a.2x}{4x\sqrt{a^2-x^2}}=\frac{a^2}{2\sqrt{a^2-x^2}}\)
\(SO=\sqrt{SA^2-AO^2}=\sqrt{a^2-\frac{a^4}{4\left(a^2-x^2\right)}}=\frac{a\sqrt{3a^2-4x^2}}{2\sqrt{a^2-x^2}}\)
\(V_{S.ABC}=\frac{1}{3}S_{ABC}.SO=\frac{1}{3}x\sqrt{a^2-x^2}.\frac{a\sqrt{3a^2-4x^2}}{2\sqrt{a^2-x^2}}=\frac{ax\sqrt{3a^2-4x^2}}{6}\)
Ta có: \(x\sqrt{3a^2-4x^2}=\frac{1}{2}2x\sqrt{3a^2-4x^2}\le\frac{4x^2+3a^2-4x^2}{4}=\frac{3a^2}{4}\)
Suy ra \(V_{S.ABC}\le\frac{a.3a^2}{4.6}=\frac{a^3}{8}\)
Dấu \(=\)khi \(2x=\sqrt{3a^2-4x^2}\Leftrightarrow x=\frac{a\sqrt{6}}{4}\).
Ta có: A(0;0;0)A(0;0;0) trùng với gốc tọa độ.
Vì B∈Ax nênB(a;0;0)B∈Ax nênB(a;0;0) (trong đó a là độ dài đại số của đoạn ABAB)
Tương tự ta suy ra các đỉnh D(0;b;0),A′(0;0;c)D(0;b;0),A′(0;0;c).
Điểm CC thuộc mp (Axy)(Axy) nên tọa độ CC có dạng (x,y,0)(x,y,0) trong đó xx là độ dài đại số của ABAB, yy là độ dài đại số của ADAD
suy ra C(a;b;0)C(a;b;0)
Tương tự ta suy ra D′(0;b;c),D′(0;b;c), B′(a;0;c)B′(a;0;c)
Riêng C′(a;b;c)C′(a;b;c), M(a2;b;c)M(a2;b;c).
Vậy −−→AB=(a;0;0),AB→=(a;0;0), −−→AC=(a;b;0),AC→=(a;b;0), −−→AC′=(a;b;c)AC′→=(a;b;c), −−→AM=(a2;b;c)AM→=(a2;b;c).
a) A>0
b) B> 987
A.>0
B> 987