\(\dfrac{a}{2}=\dfrac{b}{-3}=\dfrac{c}{-4,5}\). Tính giá trị: P=
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2022

a/2=b/-3=c/-4,5

nen a/4=b/-6=c/-9

Đặt a/4=b/-6=c/-9=k

=>a=4k; b=-6k; c=-9k

\(P=\dfrac{3a-2b}{8a-b+3c}=\dfrac{3\cdot4k-2\cdot\left(-6k\right)}{8\cdot4k+6k+3\cdot\left(-9k\right)}=\dfrac{24}{11}\)

Đặt a/2=b/-3=c/-4,5=k

=>a=2k; b=-3k; c=-4,5k

\(P=\dfrac{3a-2b}{8a-b+3c}=\dfrac{6k+6k}{16k+3k-13.5k}=\dfrac{12k}{5.5k}=\dfrac{24}{11}\)

14 tháng 12 2017

\(B=\dfrac{2016}{1}+\dfrac{2015}{2}+\dfrac{2014}{3}+...+\dfrac{3}{2014}+\dfrac{2}{2015}+\dfrac{1}{2016}\)

\(B=2016+\dfrac{2015}{2}+\dfrac{2014}{3}+....+\dfrac{3}{2014}+\dfrac{2}{2015}+\dfrac{1}{2016}\)

\(B=1+\left(\dfrac{2015}{2}+1\right)+\left(\dfrac{2014}{3}+1\right)+...+\left(\dfrac{3}{2014}+1\right)+\left(\dfrac{2}{2015}+1\right)+\left(\dfrac{1}{2016}+1\right)\)

\(B=\dfrac{2017}{2017}+\dfrac{2017}{2}+\dfrac{2017}{3}+....+\dfrac{2017}{2014}+\dfrac{2017}{2015}+\dfrac{2017}{2016}\)

\(B=2017\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}\right)\)

\(\dfrac{B}{A}=\dfrac{2017\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{2014}+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}}=2017\)

14 tháng 12 2017

\(\dfrac{B}{A}=\dfrac{\dfrac{2016}{1}+\dfrac{2015}{2}+\dfrac{2014}{3}+...+\dfrac{3}{2014}+\dfrac{2}{2015}+\dfrac{1}{2016}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+...+\dfrac{1}{2016}+\dfrac{1}{2017}}\)

\(=\dfrac{1+\left(\dfrac{2015}{2}+1\right)+\left(\dfrac{2014}{3}+1\right)+...+\left(\dfrac{2}{2015}+1\right)+\left(\dfrac{1}{2016}+1\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+...+\dfrac{1}{2016}+\dfrac{1}{2017}}\)

\(=\dfrac{\dfrac{2017}{2017}+\left(\dfrac{2015}{2}+\dfrac{2}{2}\right)+\left(\dfrac{2014}{3}+\dfrac{3}{3}\right)+...+\left(\dfrac{1}{2016}+\dfrac{2016}{2016}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2016}+\dfrac{1}{2017}}\)
\(=\dfrac{2017\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2016}+\dfrac{1}{2017}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2016}+\dfrac{1}{2017}}\)

\(=2017\)

Vậy \(\dfrac{B}{A}=2017\)

24 tháng 7 2017

Áp dụng công thức bỏ dấu ngoặc:

+ có dấu trừ đằng trước-> đổi dấu tất cả các hạng tử trong ngoặc

+ có dấu cộng đằng trước-> để nguyên dấu các hạng tử trong ngoặc

25 tháng 7 2017

\(A=\left(37,1-4,5\right)-\left(-4,5\right)+37,1\)

\(A=37,1-4,5+4,5+37,1\)

\(A=2.37,1=74,2\)

\(B=-\left(315,4+275\right)+4,315-\left(10-275\right)\)

\(B=-315,4-275+4,315-10+275\)

\(B=-315,4+4,315-10=-321,085\)

\(C=-\left(\dfrac{3}{7}+\dfrac{3}{8}\right)-\left(-\dfrac{3}{8}+\dfrac{4}{7}\right)\)

\(C=-\dfrac{3}{7}-\dfrac{3}{8}+\dfrac{3}{8}-\dfrac{4}{7}\)

\(C=-1\)

Chúc bạn học tốt!!!

AH
Akai Haruma
Giáo viên
20 tháng 11 2018

Bài 1:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk\)

Khi đó: \(\left\{\begin{matrix} \frac{2a+5b}{3a-4b}=\frac{2bk+5b}{3bk-4b}=\frac{b(2k+5)}{b(3k-4)}=\frac{2k+5}{3k-4}\\ \frac{2c+5d}{3c-4d}=\frac{2dk+5d}{3dk-4d}=\frac{d(2k+5)}{d(3k-4)}=\frac{2k+5}{3k-4}\end{matrix}\right.\)

\(\Rightarrow \frac{2a+5b}{3a-4b}=\frac{2c+5d}{3c-4d}\)

Ta có đpcm.

AH
Akai Haruma
Giáo viên
20 tháng 11 2018

Bài 2:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk\)

Khi đó: \(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\)

\(\frac{a^2+b^2}{c^2+d^2}=\frac{(bk)^2+b^2}{(dk)^2+d^2}=\frac{b^2(k^2+1)}{d^2(k^2+1)}=\frac{b^2}{d^2}\)

Do đó: \(\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}(=\frac{b^2}{d^2})\) . Ta có đpcm.

30 tháng 5 2018

Bài 4:

Ta có:

\(\dfrac{a}{2}=\dfrac{b}{6}=\dfrac{c}{8}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{a}{2}=\dfrac{b}{6}=\dfrac{c}{8}=\dfrac{2a}{4}=\dfrac{2b}{12}=\dfrac{2a+2b+c}{24}\)

\(\Leftrightarrow2a+2b+c=\dfrac{24b}{6}=4b\) (1)

Áp dụng thêm một lần, ta có:

\(\dfrac{a}{2}=\dfrac{b}{6}=\dfrac{c}{8}=\dfrac{2a}{4}=\dfrac{2a-b+c}{6}\)

\(\Leftrightarrow2a-b+c=\dfrac{6b}{6}=b\) (2)

Từ (1) và (2), ta có:

\(\dfrac{2a+2b+c}{2a-b+c}=\dfrac{4b}{b}=4\)

Vậy ...

31 tháng 5 2018

Câu 1 :

\(\dfrac{1}{a}-\dfrac{1}{b}=\dfrac{b}{ab}-\dfrac{a}{ab}=\dfrac{\left(b-a\right)}{ab}=\dfrac{1}{a-b}\)

Từ đó suy ra : (b-a)(a-b)=ab <=> \(-a^2-b^2+2ab=-\left(a-b\right)^2\)=ab

Mà a,b là số dương nên ab >0 , \(\left(a-b\right)^2>0\) nên \(-\left(a-b\right)^2< 0\)

( không thỏa mãn)

Vậy không có bất kì a,b nguyên dương nào mà \(\dfrac{1}{a}-\dfrac{1}{b}=\dfrac{1}{a-b}\)

1 tháng 8 2017

1)

a) \(\frac{x}{6}\)\(\frac{7}{3}\)

\(\Rightarrow\)x.3=6.7

\(\Rightarrow\)x.3=42

\(\Rightarrow\)x   =42:3

\(\Rightarrow\)x   =14

b) làm tương tự như câu a

c) làm tương tự như câu

 d) làm tương tư như câu a nhưng hơi phúc tạp một chút là bn phải đổi ra từ hỗn số ra phân số hoặc số nguyên

e) tương tự câu d

f) làm tương tự như câu d

2)

a) 3x:\(\frac{27}{10}\)=\(\frac{1}{3}\)\(2\frac{1}{4}\)

3x: \(\frac{27}{10}\) = \(\frac{1}{3}\)\(\frac{9}{4}\)

3x: \(\frac{27}{10}\) = \(\frac{4}{27}\)

3x       = \(\frac{4}{27}\)\(\frac{27}{10}\)

3x       = \(\frac{2}{5}\)

 x        = \(\frac{2}{5}\):  3

x         = \(\frac{2}{15}\)

Các câu còn lại bn làm tương tự như câu a nha

3) 

Làm tương tự như bài 2 nha

 mik khuyên bn nếu bn giải bài thì bn nên đổi ra cùng một kiểu số thì tốt hơn như số số thập phân thì thập phân hết ấy

Cuối cùng chúc bn học giỏi

30 tháng 7 2017

\(a,\dfrac{x}{6}=\dfrac{7}{3}\Rightarrow x=\dfrac{6.7}{3}\Rightarrow x=14\)

\(b,\dfrac{20}{x}=\dfrac{-12}{15}\Rightarrow x=\dfrac{20.15}{-12}\Rightarrow x=-25\)

\(c,\dfrac{-15}{35}=\dfrac{27}{x}\Rightarrow x=\dfrac{35.27}{-15}\Rightarrow x=-63\)

\(d,\dfrac{\dfrac{4}{5}}{1\dfrac{2}{5}}=\dfrac{2\dfrac{2}{5}}{x}\Rightarrow\dfrac{\dfrac{4}{5}}{\dfrac{7}{5}}=\dfrac{\dfrac{12}{5}}{x}\Rightarrow x=\dfrac{\dfrac{7}{5}.\dfrac{12}{5}}{\dfrac{4}{5}}\Rightarrow x=\dfrac{\dfrac{84}{25}}{\dfrac{4}{5}}\Rightarrow x=\dfrac{21}{5}\)

\(e,\dfrac{x}{1\dfrac{1}{4}}=\dfrac{5}{2}\Rightarrow\dfrac{x}{\dfrac{5}{4}}=\dfrac{5}{2}\Rightarrow x=\dfrac{5}{2}.\dfrac{5}{4}\Rightarrow x=\dfrac{25}{8}\)

\(f,\dfrac{\dfrac{1}{2}}{1\dfrac{1}{4}}=\dfrac{x}{3\dfrac{1}{3}}\Rightarrow\dfrac{\dfrac{1}{2}}{\dfrac{5}{4}}=\dfrac{x}{\dfrac{10}{3}}\Rightarrow x=\dfrac{\dfrac{10}{3}.\dfrac{1}{2}}{\dfrac{5}{4}}\Rightarrow x=\dfrac{\dfrac{5}{3}}{\dfrac{5}{4}}\Rightarrow x=\dfrac{4}{3}\)

31 tháng 7 2017

a,\(1.25:0.2=1.25:0.1x\Rightarrow1.25:0.1x=\dfrac{25}{4}\Rightarrow0.1x=\dfrac{1}{5}\Rightarrow x=2\)

b,\(3.8:2x=\dfrac{1}{4}:2\dfrac{2}{3}\Rightarrow3.8:2x=\dfrac{3}{32}\Rightarrow2x=\dfrac{608}{15}\Rightarrow x=\dfrac{304}{15}\)

4 tháng 8 2018

a. \(\dfrac{3}{4}-\left|2x+1\right|=\dfrac{7}{8}\)

=> \(\left|2x+1\right|=\dfrac{3}{4}-\dfrac{7}{8}\)

=> \(\left|2x+1\right|=\dfrac{-1}{8}\)

=> \(\left\{{}\begin{matrix}2x+1=\dfrac{-1}{8}\\2x+1=\dfrac{1}{8}\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x=\dfrac{-9}{16}\\x=\dfrac{-7}{16}\end{matrix}\right.\)

#Yiin

4 tháng 8 2018

b. \(2.\left|2x-3\right|=\dfrac{1}{2}\)

=> \(\left|2x-3\right|=\dfrac{1}{4}\)

=> \(\left\{{}\begin{matrix}2x-3=\dfrac{1}{4}\\2x-3=\dfrac{-1}{4}\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x=\dfrac{13}{8}\\x=\dfrac{11}{8}\end{matrix}\right.\)

5 tháng 11 2018

Câu 1: Thực hiện phép tính :

a) \(2.\left(\dfrac{-2}{3}\right)^2-\dfrac{7}{2}=2.\dfrac{4}{9}-\dfrac{7}{2}\)

\(=\dfrac{8}{9}-\dfrac{7}{2}\)

\(=\dfrac{16}{18}-\dfrac{63}{18}=\dfrac{-47}{18}\)

\(b,5\dfrac{4}{13}.\dfrac{-3}{4}+3\dfrac{9}{13}.\left(-0,75\right)=\dfrac{69}{13}.\dfrac{-3}{4}+\dfrac{48}{13}.\dfrac{-3}{4}\)

\(=\left(\dfrac{69}{13}+\dfrac{48}{13}\right).\dfrac{-3}{4}\)

\(=\dfrac{117}{13}.\dfrac{-3}{4}\)

\(=9.\dfrac{-3}{4}=\dfrac{-27}{4}\)

\(c,\left(-1\right)^{2017}+\left|\dfrac{-1}{13}\right|+\sqrt{\dfrac{144}{169}}=-1+\dfrac{1}{13}+\dfrac{12}{13}\)

\(=-1+\dfrac{13}{13}\)

\(=-1+1=0\)

5 tháng 11 2018

Câu 3: Tìm x, biết:

a)\(\dfrac{3}{5}-x=25\)

\(x=\dfrac{3}{5}-\dfrac{125}{5}\)

\(x=\dfrac{-122}{5}\)

b)\(\dfrac{2}{3}\left|x-1\right|+\dfrac{1}{4}=\dfrac{5}{3}\)

\(\dfrac{2}{3}\left|x-1\right|=\dfrac{20}{12}-\dfrac{3}{12}\)

\(\dfrac{2}{3}\left|x-1\right|=\dfrac{17}{12}\)

\(\left|x-1\right|=\dfrac{17}{12}:\dfrac{2}{3}\)

\(\left|x-1\right|=\dfrac{17}{12}.\dfrac{3}{2}\)

\(\left|x-1\right|=\dfrac{17}{8}\)

Ta có 2 TH: TH1:\(x-1=\dfrac{17}{8}\) TH2:\(x-1=\dfrac{-17}{8}\) \(x=\dfrac{17}{8}+1\) \(x=\dfrac{-17}{8}+1\) \(x=\dfrac{17}{8}+\dfrac{8}{8}=\dfrac{25}{8}\) \(x=\dfrac{-17}{8}+\dfrac{8}{8}=\dfrac{-9}{8}\) Vậy x∈\(\left\{\dfrac{25}{5};\dfrac{-9}{8}\right\}\)