Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cm: ta có BĐT:\(\left(x+y\right)^2\ge4xy\)(khá quen thuộc)
\(\Leftrightarrow xy\le\frac{\left(x+y\right)^2}{4}=1\)(1)
\(M=x^2y^2\left(x^2+y^2\right)=\frac{1}{2}xy.2xy.\left(x^2+y^2\right)\)
áp dụng BĐT trên theo chiều ngược lại:(x,y dương)
\(2xy\left(x^2+y^2\right)\le\frac{\left(x^2+2xy+y^2\right)^2}{4}=\frac{\left(x+y\right)^4}{4}=4\)
do đó \(M\le\frac{1}{2}xy.4=2xy\)
mà \(xy\le1\Rightarrow M\le2\)
dấu = xảy ra khi x=y=1
1/2 4/5 4/3 5/4 0 0 0 0 |2x-1| |5x-4| |3x-4| |4x-5| 1-2x 2x-1 2x-1 2x-1 2x-1 tổng 4-5x 4-5x 5x-4 5x-4 5x-4 4-3x 4-3x 4-3x 3x-4 3x-4 5-4x 5-4x 5-4x 5-4x 4x-5 14-14x 12-10x 4 6x-4 14x-14
Dựa vào bảng ta có:
TH1: \(x\le\frac{1}{2}\)
pt <=> 14-14x=44 <=> x=-15/7 (thỏa mãn)
TH2: \(\frac{1}{2}< x\le\frac{4}{5}\)
pt <=> 12-10x=44 <=> -16/5 ( loại)
TH3: \(\frac{4}{5}< x\le\frac{4}{3}\)
pt <=> 4=44 vô lí
Th4: \(\frac{4}{3}< x\le\frac{5}{4}\)
pt <==> 6x-4 =44 <=> x=8 ( loại)
th5: x>5/4
pt <=> 14x-14=44 <=> x=29/7 ( thỏa mãn)
a
Dễ thấy theo AM - GM ta có:
\(M=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\left(\frac{y}{x}+\frac{x}{4y}\right)+\frac{3x}{4y}\ge2\sqrt{\frac{y}{x}\cdot\frac{x}{4y}}+\frac{3\cdot2y}{4y}=\frac{5}{2}\)
Đẳng thức xảy ra tại \(x=2y\)
b
\(x^2+3+\frac{1}{x^2+3}=\left[\frac{\left(x^2+3\right)}{9}+\frac{1}{x^2+3}\right]+\frac{8\left(x^2+3\right)}{9}\)
\(\ge2\sqrt{\frac{x^2+3}{9}\cdot\frac{1}{x^2+3}}+\frac{8\left(x^2+3\right)}{9}=\frac{2}{3}+\frac{8\cdot3}{9}=\frac{10}{3}\)
Đẳng thức xảy ra tại x=0
\(T=\frac{3+x}{x}+\frac{6-x}{3-x}=\frac{\left(3+x\right)\left(3-x\right)+x\left(6-x\right)}{x\left(3-x\right)}=\frac{9-x^2+6x-x^2}{x\left(3-x\right)}=\frac{9+6x-2x^2}{x\left(3-x\right)}\)
Đặt T = a
<=> \(\frac{9+6x-2x^2}{x\left(3-x\right)}=a\)
<=> \(9+6x-2x^2=3xa-x^2a\)
<=> \(2x^2-6x-9=x^2a-3xa\)
<=> \(x^2\left(2-a\right)-x\left(6-3a\right)-9=0\)
Phương trình trên có nghiệm
<=> \(\Delta=\left(6-3a\right)^2+4.9.\left(2-a\right)\ge0\)
<=> \(36-36a+9a^2+72-36a\ge0\)
<=> \(9a^2-72a+108\ge0\)
<=> \(\left(a-6\right)\left(a-2\right)\ge0\)
<=> \(\hept{\begin{cases}a\ge6\\a\le2\end{cases}}\)
Vậy \(Min_T=6\) <=> \(x=\frac{3}{2}\)
và \(Max_T=2\Leftrightarrow x\in\varnothing\) (Không tồn tại giá trị lớn nhất của x )
2/ Giả sử:
\(\sqrt{n+2}-\sqrt{n+1}>\sqrt{n+1}-\sqrt{n}\)
\(\Leftrightarrow\sqrt{n+2}+\sqrt{n}>2\sqrt{n+1}\)
\(\Leftrightarrow2n+2+2\sqrt{n^2+2n}>4n+4\)
\(\Leftrightarrow\sqrt{n^2+2n}>n+1\)
\(\Leftrightarrow n^2+2n>n^2+2n+1\)
\(\Leftrightarrow0>1\) (sai)
Vậy \(\sqrt{n+2}-\sqrt{n+1}< \sqrt{n+1}-\sqrt{n}\)
ĐKXĐ \(x,y\ge0\)
Ta có \(x^3+y^3+xy-x^2-y^2=0\)
\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x^2-xy+y^2\right)=0\)
\(\Leftrightarrow\left(x+y-1\right)\left(x^2-xy+y^2\right)=0\)
\(\Leftrightarrow x+y-1=0\)
\(\Leftrightarrow x+y=1\)
Mà x,y\(\ge0\)
\(\Rightarrow\hept{\begin{cases}0\le x\le1\\0\le y\le1\end{cases}}\)\(\Rightarrow\hept{\begin{cases}0\le\sqrt{x}\le1\\0\le\sqrt{y}\le1\end{cases}}\)\(\Rightarrow\hept{\begin{cases}1\le1+\sqrt{x}\le2\\\frac{1}{2}\ge\frac{1}{2+\sqrt{y}}\ge\frac{1}{3}\end{cases}}\)
\(\Rightarrow1\ge P\ge\frac{1}{3}\)
Nhận thấy p\(=\frac{1}{3}\Leftrightarrow\)\(\hept{\begin{cases}x=0\\y=1\end{cases}}\)(thỏa mãn)
Nhận thấy P\(=1\Leftrightarrow\hept{\begin{cases}x=1\\y=0\end{cases}}\)(thỏa mãn)
\(\Rightarrow\orbr{\begin{cases}\hept{\begin{cases}x\ge0\\y\le1\end{cases}}\\\hept{\begin{cases}x\le1\\y\ge0\end{cases}}\end{cases}}\)