K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2017

cm: ta có BĐT:\(\left(x+y\right)^2\ge4xy\)(khá quen thuộc)

\(\Leftrightarrow xy\le\frac{\left(x+y\right)^2}{4}=1\)(1)

\(M=x^2y^2\left(x^2+y^2\right)=\frac{1}{2}xy.2xy.\left(x^2+y^2\right)\)

áp dụng BĐT trên theo chiều ngược lại:(x,y dương)

\(2xy\left(x^2+y^2\right)\le\frac{\left(x^2+2xy+y^2\right)^2}{4}=\frac{\left(x+y\right)^4}{4}=4\)

do đó \(M\le\frac{1}{2}xy.4=2xy\)

\(xy\le1\Rightarrow M\le2\)

dấu = xảy ra khi x=y=1

6 tháng 4 2021

x + y = 1 => y = 1 - x mà x,y dương => 0 < x < 1

Suy ra : \(A=2x^2-\left(1-x\right)^2+x+\frac{1}{x}+1=2x^2-1+2x-x^2+x+\frac{1}{x}+1\)

\(=x^2+3x+\frac{1}{x}=x^2-x+\frac{1}{4}+4x+\frac{1}{x}+\frac{1}{4}\)

\(=\left(x-\frac{1}{2}\right)^2+4x+\frac{1}{x}+\frac{1}{4}\)

Mà \(4x+\frac{1}{x}\ge2\sqrt{4x.\frac{1}{x}}=2.2=4\). Dấu "=" xảy ra <=> 4x = 1/x <=> x = 1/2

Với x = 1/2 thì ( x - 1/2 )2 cũng đạt GTNN là 0 => y = 1 - a = 1/2

Vậy min\(A=4+\frac{1}{4}=\frac{17}{4}\)<=> x = y = 1/2

19 tháng 4 2021

Cách giải như sau

x + y = 1 => y = 1 - x mà x,y dương => 0 < x < 1

Suy ra : A=2x2−(1−x)2+x+1x +1=2x2−1+2x−x2+x+1x +1

=x2+3x+1x =x2−x+14 +4x+1x +14 

=(x−12 )2+4x+1x +14 

Mà 4x+1x ≥2√4x.1x =2.2=4. Dấu "=" xảy ra <=> 4x = 1/x <=> x = 1/2

Với x = 1/2 thì ( x - 1/2 )2 cũng đạt GTNN là 0 => y = 1 - a = 1/2

Vậy minA=4+14 =174 <=> x = y = 1/2

          HOK TỐT

16 tháng 5 2017

Đặt: y + z = a thì ta có

\(x\le2a\)

Từ đề bài thì ta có thể suy ra

\(A\le\frac{2x}{a^2}-\frac{1}{\left(x+a\right)^3}\)

\(\le\frac{4}{a}-\frac{1}{27a^3}=\frac{108a^2-1}{27a^3}\)

 \(=16-\frac{\left(6a-1\right)^2\left(12a+1\right)}{27a^3}\le16\)

 Vậy GTLN là \(A=16\). Dấu = xảy ra khi \(\hept{\begin{cases}x=\frac{1}{3}\\y=z=\frac{1}{12}\end{cases}}\) 

16 tháng 5 2017

Làm sao để tách được bởi vì làm sao dự đoán dượcđiểm rơi?

20 tháng 4 2020

Max=3,222222

23 tháng 7 2016

Bài này hơi căng đấy, theo cách tao nhã nào đó, nó có thể là một bề dày không hoen ố. 

Dễ dàng chứng minh được bđt sau:

\(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\) \(\left(i\right)\)

Thật vậy, áp dụng bđt  \(B.C.S\) cho bộ số bao gồm  \(\left(1;1\right)\)  và  \(\left(x^2;y^2\right)\)  ta được:

\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x+y\right)^2\) 

\(\Rightarrow\)  \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)

Hay nói cách khác,  \(\sqrt{2\left(x^2+y^2\right)}\ge x+y\)

Dấu  \("="\)  xảy ra khi  \(x=y\)

Vậy, bđt đã cho được chứng minh!

Theo như cách đề bài đã chọn, để biểu thức  \(A\)  có giá trị lớn nhất thì  \(\frac{1}{A}\) phải đạt giá trị nhỏ nhất hay ta phải tìm  \(P_{min}\)(với  \(P=\frac{1}{A}\)\(\Rightarrow\) \(P\in Z^+\))

Ta có:  \(P=\frac{x+y+2}{xy}=\frac{1}{x}+\frac{1}{y}+\frac{2}{xy}\)

Lại có:  \(4=x^2+y^2\ge2xy\)  \(\Rightarrow\)  \(2\ge xy\)  (theo bđt Cauchy cho hai số  \(x^2,y^2\)  không âm)

nên  \(P\ge\frac{1}{x}+\frac{1}{y}+1\)

Mặt khác, tiếp tục áp dụng bđt  \(Cauchy-Schwarz\)  dạng  \(Engel\)  cho bộ số gồm  \(\left(\frac{1}{x};\frac{1}{y}\right)\)  đối với  \(P,\)ta có:

\(P\ge\frac{4}{x+y}+1\ge\frac{4}{\sqrt{2\left(x^2+y^2\right)}}+1=\frac{4}{\sqrt{2.4}}+1=\sqrt{2}+1\) (theo bđt  \(\left(i\right)\)  )

Do đó,  \(P_{min}=\sqrt{2}+1\)  tức là  \(\frac{1}{A}\)  đạt giá trị nhỏ nhất là  \(\sqrt{2}+1\)

Vậy, dễ dàng suy ra được  \(A_{max}=\frac{1}{\sqrt{2}+1}\)

Dấu  \("="\)  xảy ra  \(\Leftrightarrow\)  \(\hept{\begin{cases}x,y>0\\x^2+y^2=4\\x=y\end{cases}\Leftrightarrow}\) \(x=y=\sqrt{2}\)

30 tháng 9 2018

\(P\le\frac{x}{2\sqrt{x^4.y^2}}+\frac{y}{2\sqrt{x^2.y^4}}=\frac{x}{2x^2y}+\frac{y}{2xy^2}=\frac{1}{2xy}+\frac{1}{2xy}=\frac{1}{xy}=1\)

Dấu "=" xảy ra khi x=y=1

9 tháng 6 2019

dưới mẫu là x + y + 2 mới đúng đề bạn à