Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x + y = 1 => y = 1 - x mà x,y dương => 0 < x < 1
Suy ra : \(A=2x^2-\left(1-x\right)^2+x+\frac{1}{x}+1=2x^2-1+2x-x^2+x+\frac{1}{x}+1\)
\(=x^2+3x+\frac{1}{x}=x^2-x+\frac{1}{4}+4x+\frac{1}{x}+\frac{1}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+4x+\frac{1}{x}+\frac{1}{4}\)
Mà \(4x+\frac{1}{x}\ge2\sqrt{4x.\frac{1}{x}}=2.2=4\). Dấu "=" xảy ra <=> 4x = 1/x <=> x = 1/2
Với x = 1/2 thì ( x - 1/2 )2 cũng đạt GTNN là 0 => y = 1 - a = 1/2
Vậy min\(A=4+\frac{1}{4}=\frac{17}{4}\)<=> x = y = 1/2
Cách giải như sau
x + y = 1 => y = 1 - x mà x,y dương => 0 < x < 1
Suy ra : A=2x2−(1−x)2+x+1x +1=2x2−1+2x−x2+x+1x +1
=x2+3x+1x =x2−x+14 +4x+1x +14
=(x−12 )2+4x+1x +14
Mà 4x+1x ≥2√4x.1x =2.2=4. Dấu "=" xảy ra <=> 4x = 1/x <=> x = 1/2
Với x = 1/2 thì ( x - 1/2 )2 cũng đạt GTNN là 0 => y = 1 - a = 1/2
Vậy minA=4+14 =174 <=> x = y = 1/2
HOK TỐT
Đặt: y + z = a thì ta có
\(x\le2a\)
Từ đề bài thì ta có thể suy ra
\(A\le\frac{2x}{a^2}-\frac{1}{\left(x+a\right)^3}\)
\(\le\frac{4}{a}-\frac{1}{27a^3}=\frac{108a^2-1}{27a^3}\)
\(=16-\frac{\left(6a-1\right)^2\left(12a+1\right)}{27a^3}\le16\)
Vậy GTLN là \(A=16\). Dấu = xảy ra khi \(\hept{\begin{cases}x=\frac{1}{3}\\y=z=\frac{1}{12}\end{cases}}\)
Bài này hơi căng đấy, theo cách tao nhã nào đó, nó có thể là một bề dày không hoen ố.
Dễ dàng chứng minh được bđt sau:
\(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\) \(\left(i\right)\)
Thật vậy, áp dụng bđt \(B.C.S\) cho bộ số bao gồm \(\left(1;1\right)\) và \(\left(x^2;y^2\right)\) ta được:
\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x+y\right)^2\)
\(\Rightarrow\) \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)
Hay nói cách khác, \(\sqrt{2\left(x^2+y^2\right)}\ge x+y\)
Dấu \("="\) xảy ra khi \(x=y\)
Vậy, bđt đã cho được chứng minh!
Theo như cách đề bài đã chọn, để biểu thức \(A\) có giá trị lớn nhất thì \(\frac{1}{A}\) phải đạt giá trị nhỏ nhất hay ta phải tìm \(P_{min}\)(với \(P=\frac{1}{A}\)\(\Rightarrow\) \(P\in Z^+\))
Ta có: \(P=\frac{x+y+2}{xy}=\frac{1}{x}+\frac{1}{y}+\frac{2}{xy}\)
Lại có: \(4=x^2+y^2\ge2xy\) \(\Rightarrow\) \(2\ge xy\) (theo bđt Cauchy cho hai số \(x^2,y^2\) không âm)
nên \(P\ge\frac{1}{x}+\frac{1}{y}+1\)
Mặt khác, tiếp tục áp dụng bđt \(Cauchy-Schwarz\) dạng \(Engel\) cho bộ số gồm \(\left(\frac{1}{x};\frac{1}{y}\right)\) đối với \(P,\)ta có:
\(P\ge\frac{4}{x+y}+1\ge\frac{4}{\sqrt{2\left(x^2+y^2\right)}}+1=\frac{4}{\sqrt{2.4}}+1=\sqrt{2}+1\) (theo bđt \(\left(i\right)\) )
Do đó, \(P_{min}=\sqrt{2}+1\) tức là \(\frac{1}{A}\) đạt giá trị nhỏ nhất là \(\sqrt{2}+1\)
Vậy, dễ dàng suy ra được \(A_{max}=\frac{1}{\sqrt{2}+1}\)
Dấu \("="\) xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}x,y>0\\x^2+y^2=4\\x=y\end{cases}\Leftrightarrow}\) \(x=y=\sqrt{2}\)
\(P\le\frac{x}{2\sqrt{x^4.y^2}}+\frac{y}{2\sqrt{x^2.y^4}}=\frac{x}{2x^2y}+\frac{y}{2xy^2}=\frac{1}{2xy}+\frac{1}{2xy}=\frac{1}{xy}=1\)
Dấu "=" xảy ra khi x=y=1
cm: ta có BĐT:\(\left(x+y\right)^2\ge4xy\)(khá quen thuộc)
\(\Leftrightarrow xy\le\frac{\left(x+y\right)^2}{4}=1\)(1)
\(M=x^2y^2\left(x^2+y^2\right)=\frac{1}{2}xy.2xy.\left(x^2+y^2\right)\)
áp dụng BĐT trên theo chiều ngược lại:(x,y dương)
\(2xy\left(x^2+y^2\right)\le\frac{\left(x^2+2xy+y^2\right)^2}{4}=\frac{\left(x+y\right)^4}{4}=4\)
do đó \(M\le\frac{1}{2}xy.4=2xy\)
mà \(xy\le1\Rightarrow M\le2\)
dấu = xảy ra khi x=y=1