Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(\frac{-1}{4}\right)^{40}=\left[\left(\frac{-1}{4}\right)^2\right]^{20}=\left(\frac{1}{16}\right)^{20}\)
\(\left(\frac{-1}{5}\right)^{34}=\left[\left(\frac{-1}{5}\right)^2\right]^{17}=\left(\frac{1}{25}\right)^{17}\)
\(\Rightarrow\left(\frac{1}{16}\right)^{20}>\left(\frac{1}{25}\right)^{17}\)
Vậy \(\left(\frac{-1}{4}\right)^{40}>\left(\frac{-1}{5}\right)^{34}\)
Bài làm
Ta có: \(\left(-\frac{1}{4}\right)^2=\left(\frac{1}{4}\right)^2\)
\(\left(\frac{1}{8}\right)^5=\left[\left(\frac{1}{4}\right)^2\right]^5=\left(\frac{1}{4}\right)^{10}\)
Mà \(2< 10\)
=> \(\left(\frac{1}{4}\right)^2< \left(\frac{1}{4}\right)^{10}\)
Hay \(\left(-\frac{1}{4}\right)^2< \left(\frac{1}{8}\right)^5\)
Vậy \(\left(-\frac{1}{4}\right)^2< \left(\frac{1}{8}\right)^5\)
# Học tốt #
\(A=x+\left(x+\frac{1}{5}\right)+\left(x+\frac{2}{5}\right)+\left(x+\frac{3}{5}\right)+\left(x+\frac{4}{5}\right)\)
\(=5x+\frac{1}{5}+\frac{2}{5}+\frac{3}{5}+\frac{4}{5}\)
\(=5x+2\)
\(B=5x\)
\(\Rightarrow A>B\)Với \(\forall\)\(x\)
#)Giải :
\(A=\left[x\right]+\left[1+\frac{1}{5}\right]+\left[x+\frac{2}{5}\right]+\left[x+\frac{3}{5}\right]+\left[x+\frac{4}{5}\right]\)
Thay x = 3,7 vào biểu thức, ta có :
\(A=\left[3,7\right]+\left[3,7+\frac{1}{5}\right]+\left[3,7+\frac{2}{5}\right]+\left[3,7+\frac{3}{5}\right]+\left[3,7+\frac{4}{5}\right]\)
\(A=\left[3,7+3,7+3,7+3,7+3,7\right]+\left[1+\frac{1}{5}+\frac{2}{5}+\frac{3}{5}+\frac{4}{5}\right]\)
\(A=18,5+3\)
\(A=21,5\)
\(B=\left[5x\right]=\left[5\times3,7\right]=18,5\)
Vì 21,5 > 18,5 \(\Rightarrow A>B\)
\(\left(\frac{-1}{64}\right)^5=\left(\left(\frac{-1}{4}\right)^3\right)^5=\left(\frac{-1}{4}\right)^{15}\)
\(\left(\frac{-1}{4}\right)^{15}< \left(\frac{-1}{4}\right)^7\Leftrightarrow\left(\frac{-1}{64}\right)^5< \left(\frac{-1}{4}\right)^7\)
\(\left(\frac{-1}{64}\right)^5=-\frac{1}{64^5}=-\frac{1}{\left(4^3\right)^5}=-\frac{1}{4^{15}}\)
\(\left(-\frac{1}{4}\right)^7=-\frac{1}{4^7}\)
\(-\frac{1}{4^{15}}>-\frac{1}{4^7}\)
\(\Rightarrow\left(-\frac{1}{64}\right)^5>\left(-\frac{1}{4}\right)^7\)