Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left[0,8\cdot7+(0,8)^2\right]\cdot\left[1,25\cdot7-\frac{4}{5}\cdot1,25\right]-47,86\)
\(=0,8\cdot(7+0,8)\cdot1,25\cdot(7-0,8)-47,86\)
\(=0,8\cdot7,8\cdot1,25\cdot6,2-47,86\)
\(=48,36-47,86=0,5\)
\(B=\frac{(1,09-0,29)\cdot\frac{5}{4}}{(18,9-16,65)\cdot\frac{8}{9}}=\frac{0,8\cdot1,25}{2,25\cdot\frac{8}{9}}=\frac{1}{2}\)
\(A:B=0,5:\frac{1}{2}=\frac{1}{2}:\frac{1}{2}=\frac{1}{2}\cdot2=1\)
A gấp 1 lần B
\(A=x+\left(x+\frac{1}{5}\right)+\left(x+\frac{2}{5}\right)+\left(x+\frac{3}{5}\right)+\left(x+\frac{4}{5}\right)\)
\(=5x+\frac{1}{5}+\frac{2}{5}+\frac{3}{5}+\frac{4}{5}\)
\(=5x+2\)
\(B=5x\)
\(\Rightarrow A>B\)Với \(\forall\)\(x\)
#)Giải :
\(A=\left[x\right]+\left[1+\frac{1}{5}\right]+\left[x+\frac{2}{5}\right]+\left[x+\frac{3}{5}\right]+\left[x+\frac{4}{5}\right]\)
Thay x = 3,7 vào biểu thức, ta có :
\(A=\left[3,7\right]+\left[3,7+\frac{1}{5}\right]+\left[3,7+\frac{2}{5}\right]+\left[3,7+\frac{3}{5}\right]+\left[3,7+\frac{4}{5}\right]\)
\(A=\left[3,7+3,7+3,7+3,7+3,7\right]+\left[1+\frac{1}{5}+\frac{2}{5}+\frac{3}{5}+\frac{4}{5}\right]\)
\(A=18,5+3\)
\(A=21,5\)
\(B=\left[5x\right]=\left[5\times3,7\right]=18,5\)
Vì 21,5 > 18,5 \(\Rightarrow A>B\)
Ta có:
\(\left(\frac{-1}{8}\right)^{100}=\frac{\left(-1\right)^{100}}{8^{100}}=\frac{1}{\left(2^3\right)^{100}}=\frac{1}{2^{300}}\)
\(\left(\frac{-1}{4}\right)^{200}=\frac{\left(-1\right)^{200}}{4^{200}}=\frac{1}{\left(2^2\right)^{100}}=\frac{1}{2^{200}}\)
Vì \(2^{300}>2^{200}\)\(\Rightarrow\frac{1}{2^{300}}< \frac{1}{2^{200}}\)
\(\Rightarrow\left(\frac{-1}{8}\right)^{^{100}}< \left(\frac{-1}{4}\right)^{200}\)
Theo bài ra , ta có :
\(\left(2.5\right)^2=10^2\)
\(2^2.5^2=\left(2.5\right)^2=10^2\)
Vì \(10^2=10^2=100\)
Vậy \(\left(2.5\right)^2=2^2.5^2\)
b)
\(\left(\frac{1}{2}.\frac{3}{4}\right)^3=\left(\frac{1}{2}\right)^3.\left(\frac{3}{4}\right)^3\)
mà \(\left(\frac{1}{2}\right)^3.\left(\frac{3}{4}\right)^3\) là vế phải
Vậy \(\left(\frac{1}{2}.\frac{3}{4}\right)^3=\left(\frac{1}{2}\right)^3.\left(\frac{3}{4}\right)^3\)
Ta có : \(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{19}\right)\left(1-\frac{1}{20}\right)\)
\(=\frac{1}{2}.\frac{2}{3}....\frac{18}{19}.\frac{19}{20}\)
\(=\frac{1.2....18.19}{2.3...19.20}\)
\(=\frac{1}{20}>\frac{1}{21}\)
Vậy A > 1/21
b) \(9^5=3^{2\cdot5}=3^{10}\)
\(27^3=3^{3\cdot3}=3^9\)
=> tự kết luận
c) \(\left(\frac{1}{8}\right)^6=\left(\frac{1}{2}^3\right)^6=\left(\frac{1}{2}\right)^{18}\)
\(\left(\frac{1}{32}\right)^4=\left(\frac{1}{2}^5\right)^4=\left(\frac{1}{2}\right)^{20}\)
=> tự kết luận
Bài làm
Ta có: \(\left(-\frac{1}{4}\right)^2=\left(\frac{1}{4}\right)^2\)
\(\left(\frac{1}{8}\right)^5=\left[\left(\frac{1}{4}\right)^2\right]^5=\left(\frac{1}{4}\right)^{10}\)
Mà \(2< 10\)
=> \(\left(\frac{1}{4}\right)^2< \left(\frac{1}{4}\right)^{10}\)
Hay \(\left(-\frac{1}{4}\right)^2< \left(\frac{1}{8}\right)^5\)
Vậy \(\left(-\frac{1}{4}\right)^2< \left(\frac{1}{8}\right)^5\)
# Học tốt #
Thank you very much!!!!!!