K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2018

Ta có: \(\frac{30-2\sqrt{45}}{4}=\frac{30}{4}-\frac{2\sqrt{45}}{4}=7,5-\frac{2\sqrt{45}}{4}\le7,5\)

\(\Rightarrow\frac{30-2\sqrt{45}}{4}< 17\)

Chúc bn hc tốt!

12 tháng 6 2018

Ta có: \(30-2\sqrt{45}\)\(30\)\(68\)

\(\Rightarrow\frac{30-2\sqrt{45}}{4}\)\(\frac{68}{4}=17\)

26 tháng 10 2016

1/√1 > 1/10
1/√2 > 1/10
1/√3 > 1/10
....................
1/√99 > 1/10
1/√100 = 1/10
Cộng từng vế ta có:
1/√1 + 1/√2 + 1/√3 + ... + 1/√100 >100.1/0 = 10 (Đpcm)

2 tháng 2 2017

\(\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=4+5+1=10=\sqrt{100}>\sqrt{99}\)

AH
Akai Haruma
Giáo viên
7 tháng 3 2020

Lời giải:

a)
Đặt $2^{10}=a; 3^{10}=b; 4^{10}=c$ trong đó $a,b,c>0$ và $a\neq b\neq c$

Khi đó:

Xét hiệu \(2^{30}+3^{30}+4^{30}-3.24^{10}=a^3+b^3+c^3-3abc\)

\(=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)\)

\(=\frac{a+b+c}{2}[(a-b)^2+(b-c)^2+(c-a)^2]\)

Vì $a,b,c>0\Rightarrow a+b+c>0$

$a\neq b\neq c\Rightarrow (a-b)^2>0; (b-c)^2>0; (c-a)^2>0$

$\Rightarrow (a-b)^2+(b-c)^2+(c-a)^2>0$

Do đó:

$2^{30}+3^{30}+4^{30}-3.24^{10}=\frac{a+b+c}{2}[(a-b)^2+(b-c)^2+(c-a)^2]>0$

$\Rightarrow 2^{30}+3^{30}+4^{30}>3.24^{10}$

b)

Có: $4=\sqrt{16}>\sqrt{14}$

$\sqrt{33}>\sqrt{29}$

Cộng theo vế:

$4+\sqrt{33}>\sqrt{14}+\sqrt{29}$

AH
Akai Haruma
Giáo viên
29 tháng 2 2020

Lời giải:

a)
Đặt $2^{10}=a; 3^{10}=b; 4^{10}=c$ trong đó $a,b,c>0$ và $a\neq b\neq c$

Khi đó:

Xét hiệu \(2^{30}+3^{30}+4^{30}-3.24^{10}=a^3+b^3+c^3-3abc\)

\(=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)\)

\(=\frac{a+b+c}{2}[(a-b)^2+(b-c)^2+(c-a)^2]\)

Vì $a,b,c>0\Rightarrow a+b+c>0$

$a\neq b\neq c\Rightarrow (a-b)^2>0; (b-c)^2>0; (c-a)^2>0$

$\Rightarrow (a-b)^2+(b-c)^2+(c-a)^2>0$

Do đó:

$2^{30}+3^{30}+4^{30}-3.24^{10}=\frac{a+b+c}{2}[(a-b)^2+(b-c)^2+(c-a)^2]>0$

$\Rightarrow 2^{30}+3^{30}+4^{30}>3.24^{10}$

b)

Có: $4=\sqrt{16}>\sqrt{14}$

$\sqrt{33}>\sqrt{29}$

Cộng theo vế:

$4+\sqrt{33}>\sqrt{14}+\sqrt{29}$

15 tháng 6 2016

\(2< \sqrt{2}+1\)

\(1>\sqrt{3}-1\)

9 tháng 9 2018

what hell ?
Bạn giải hộ ai à?

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.vi diệu !

9 tháng 9 2018

hok cũng giỏi ghê 

~ tự biên tự diễn hả ~

6 tháng 4 2019

Cái này là toán lớp 9 chứ.

a)
ĐKXĐ : \(x\ne\pm4\)

\(A=\left(\frac{x-\sqrt{x}+7}{x-4}+\frac{\sqrt{x}+2}{x-4}\right):\left(\frac{\left(\sqrt{x}+2\right)^2}{x-4}-\frac{\left(\sqrt{x}-2\right)^2}{x-4}-\frac{2\sqrt{x}}{x-4}\right)\)

\(=\left(\frac{x-\sqrt{x}+7+\sqrt{x}+2}{x-4}\right):\left(\frac{x+4\sqrt{x}+4-x+4\sqrt{x}-4-2\sqrt{x}}{x-4}\right)\)

\(=\frac{x+9}{x-4}\cdot\frac{x-4}{6\sqrt{x}}=\frac{x+9}{6\sqrt{x}}\)

b)

Ta có

\(x+9-6\sqrt{x}=\left(\sqrt{x}-3\right)^2\ge0\)
\(\Rightarrow x+9\ge6\sqrt{x}\)

\(\Rightarrow\frac{x+9}{6\sqrt{x}}\ge1\)

\(\Leftrightarrow A\ge1\)

\(\Leftrightarrow\frac{1}{A}\le1\)

\(\Rightarrow A\ge\frac{1}{A}\)