K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2019

Bạn sử dụng tính chất :nếu a/b<1 thì a/b<a+n/b+n

Bạn cộng tử và mẫu của E với 2017 rồi đặt 2018 ở cả tử và mẫu,rút gon cả tử và mẫu cho 2018 ta được phân số F

Từ đó E<F

Hoặc bạn nhan cả hai với 2018 rồi so sánh phần bù 2018E và 2018F .

Xin lỗi mình không thể trình bày ra được,hok tốt nha

19 tháng 10 2018

lớn hơn

19 tháng 10 2018

nhỏ hơn

5 tháng 10 2019

Ta có : 2019^10+2019^9=2019^9.(2019+1)=2019^9.2020

Mà 2020^10>2019^9.2020

=>2020^10>2019^10+2019^9

24 tháng 3 2019

mk chỉ cần phần c thui nha!!!!!!!

24 tháng 3 2019

c) \(M=\frac{2019}{2020}+\frac{2020}{2021}\) và \(N=\frac{2019+2020}{2020+2021}\)

Ta có \(\frac{2019}{2020}>\frac{2019}{2020+2021}\)

\(\frac{2020}{2021}>\frac{2020}{2020+2021}\)

\(\Rightarrow\frac{2019}{2020}+\frac{2020}{2021}< \frac{2019+2020}{2020+2021}=N\)

\(\Rightarrow M>N\) 

8 tháng 10 2019

So sánh nha

8 tháng 10 2019

2019^10+2019^10>2020^10

12 tháng 7 2019

Áp dụng tính chất \(\frac{a}{b}< 1\Rightarrow\frac{a}{b}< \frac{a+m}{b+m}\left(m\in N\right)\)

Ta có: \(\frac{10^{2019}-1}{10^{2020}-1}< \frac{10^{2019}-1+11}{10^{2020}-1+11}=\frac{10^{2019}+10}{10^{2020}+10}=\frac{10.\left(10^{2018}+1\right)}{10.\left(10^{2019}+1\right)}=\frac{10^{2018}+1}{10^{2019}+1}\)

\(\Rightarrow\frac{10^{2019}-1}{10^{2020}-1}< \frac{10^{2018}+1}{10^{2019}+1}\)

12 tháng 7 2019

Đặt \(A=\frac{10^{2019}-1}{10^{2020}-1}\)

\(B=\frac{10^{2018}+1}{10^{2019}+1}\)

Dễ thấy \(A< 1\)

Áp dụng kết quả bài trên nếu \(\frac{a}{b}< 1\)thì \(\frac{a+m}{b+m}>\frac{a}{b}\)với m>0

Vậy \(A=\frac{10^{2019}-1}{10^{2020}-1}< \frac{\left[10^{2019}-1\right]+11}{\left[10^{2020}-1\right]+11}=\frac{10^{2019}+10}{10^{2020}+10}\)

\(A< \frac{10\left[10^{2018}+1\right]}{10\left[10^{2019}+1\right]}=\frac{10^{2018}+1}{10^{2019}+1}=B\)

Do đó : A<B