Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4A=1+1/4+1/42+......+1/498
4A - A = ( 1+1/4+1/42+..........+1/498) - ( 1/4+1/42+1/43+.......+1/499)
3A= 1-1/499
A= 1/3 - 1/499 : 3
Mà 1/499 : 3 > 0 => 1/3 - 1/499 : 3 < 1/3
Hay A < 1/3
a/ Rút gọn:
\(A=\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+....+\frac{1}{4^{99}}.\)
=> \(4A=1+\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+....+\frac{1}{4^{98}}\)
=> \(4A=1+\left(\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+....+\frac{1}{4^{98}}+\frac{1}{4^{99}}\right)-\frac{1}{4^{99}}\)
<=> \(4A=1+A-\frac{1}{4^{99}}\)
=> \(3A=1-\frac{1}{4^{99}}\)
=> \(A=\frac{1}{3}-\frac{1}{3.4^{99}}\)
b/ Ta có: \(A=\frac{1}{3}-\frac{1}{3.4^{99}}< \frac{1}{3}\)
\(1.A=\frac{1}{3^2}-\frac{1}{3^4}+\frac{1}{3^6}-\frac{1}{3^8}+...+\frac{1}{3^{98}}-\frac{1}{3^{100}}\)(1)
\(3^2.A=\frac{3^2}{3^2}-\frac{1}{3^2}+\frac{1}{3^4}-\frac{1}{3^6}+...+\frac{1}{3^{96}}-\frac{1}{3^{98}}\)(2)
cộng lai (phân giữa triệt tiêu hết)
\(\left(1+9\right)A=1-\frac{1}{3^{100}}< 1\)
=>\(10A< 1\Rightarrow A< 0,1\)
\(\frac{19}{9^2.10^2}+...+\frac{7}{3^2.4^2}+\frac{5}{2^2.3^2}+\frac{3}{1^2.2^2}\)
\(=\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{8^2.10^2}\)
\(=\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+...+\frac{19}{81.100}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+...+\frac{1}{81}-\frac{1}{100}\)
\(=1-\frac{1}{100}< 1< \frac{11}{10}\)
Ta có: \(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)...\left(\frac{1}{100^2}-1\right)\)
\(A=\frac{-3}{2^2}.\frac{-8}{3^2}.\frac{-15}{4^2}...\frac{-9900}{100^2}\)
\(A=\frac{\left(-1\right).3}{2^2}.\frac{\left(-2\right).4}{3^2}.\frac{\left(-3\right).5}{4^2}...\frac{\left(-99\right).101}{100^2}\)
\(A=\cdot\frac{\left(-1\right).\left(-2\right).\left(-3\right)...\left(-99\right)}{2.3.4...100}.\frac{3.4.5...101}{2.3.4...100}\)
\(A=\left(-\frac{1}{100}\right).\frac{101}{2}\)
\(A=-\frac{101}{200}\)
Bạn vào phần câu hỏi tương tự, sẽ rõ đáp án ngay thôi. Vì dạng là như nhau mà ^^^