K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(a=\dfrac{8}{\sqrt{2019}+\sqrt{2011}}\)

\(b=\dfrac{8}{\sqrt{19}+\sqrt{11}}\)

Do đó: a<b

29 tháng 8 2020

\(a\)

\(\sqrt{11}+\sqrt{19}\)

\(=\)\(\sqrt{11+19}\)

\(=\)\(\sqrt{30}\)

\(=\)\(5,47\)

\(\sqrt{47}\)

\(=6,85\)

\(5,47\)\(< \)\(6,85\)

\(=>\)\(\sqrt{11}+\sqrt{19}\)\(< \)\(\sqrt{47}\)

\(b\)

\(\sqrt{7}+\sqrt{26}+1\)

\(=\)\(\sqrt{7+26}+1\)

\(=\)\(\sqrt{33}+1\)

\(=\)\(5,74+1\)

\(=\)\(6,74\)

\(\sqrt{63}\)

\(=\)\(7,93\)

\(6,74\)\(< \)\(7,93\)

\(=>\)\(\sqrt{7}+\sqrt{26}+1\)\(< \)\(\sqrt{63}\)

Học tốt!!!

2 tháng 11 2018

trên mạng có đó Triphai Tyte

3 tháng 11 2018

cho mình xin link đi

1 tháng 8 2018

a) Ta có: \(\left(\sqrt{2017}+\sqrt{2019}\right)^2=2017+2019+2\sqrt{2017.2019}\)

                                                              \(=4036+2\sqrt{\left(2018-1\right).\left(2018+1\right)}\)

                                                                \(=4036+2\sqrt{2018^2-1}< 4036+2\sqrt{2018^2}=2018.4=\left(2\sqrt{2018}\right)^2\)

Vậy x < y

21 tháng 8 2019

\(\left(\sqrt{2015}+\sqrt{2018}\right)^2=4033+2\sqrt{2015\cdot2018}\)

\(\left(\sqrt{2016}+\sqrt{2017}\right)^2=4033+2\sqrt{2016\cdot2017}\)

\(2015\cdot2018=2015\cdot2017+2015=2017\cdot\left(2015+1\right)-2017+2015\)

\(=2017\cdot2016-2\)

\(\Rightarrow2015\cdot2018< 2016\cdot2017\)

\(\Rightarrow\sqrt{2015}+\sqrt{2018}< \sqrt{2016}+\sqrt{2017}\)

9 tháng 8 2020

có bạn nào giải thích cho mình từ đoạn 2015.2018=2015.2017+2015 trở đi được k? mình cảm ơn