Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=24\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(=\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(=\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(=\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(=\left(5^{16}-1\right)\left(5^{16}+1\right)\)
\(=5^{32}-1< 5^{32}\)
Vậy \(B< A\)
Bài1:
\(a,\left(-8\right)^9\) và \(\left(-32\right)^5\)
Ta có:
\(\left(-8\right)^9=-2^{27}\)
\(\left(-32\right)^5=\left(-8.4\right)^5=-2^{27}.2^{10}\)
Vì \(-2^{27}.10< -2^{27}\) nên \(\left(-8\right)^9>\left(-32\right)^5\)
Các câu sau tương tự
Bài2:
\(a,2\left|x-1\right|-3x=7\)
+)Xét \(x\ge1\Rightarrow\left|x-1\right|=x-1\)
Do đó:
\(2\left(x-1\right)-3x=7\\ \Leftrightarrow2x-2-3x=7\\ \Leftrightarrow-x=9\\ \Leftrightarrow x=-9\left(loại\right)\)
+)Xét \(x< 1\Rightarrow\left|x-1\right|=1-x\)
Do đó:
\(2\left(1-x\right)-3x=7\\ \Leftrightarrow2-2x-3x=7\\ \Leftrightarrow-5x=5\\ x=-1\left(chon\right)\)
Vậy x=-1
Câu b tương tự
Bài 1:
\(a,\left(-8\right)^9\) và \(\left(-32\right)^5\)
\(\left(-8\right)^9=\left[\left(-2\right)^3\right]^9=\left(-2\right)^{27}\)
\(\left(-32\right)^5=\left[\left(-2\right)^5\right]^5=\left(-2\right)^{25}\)
\(\left(-2\right)^{27}< \left(-2\right)^{25}\)
\(\Rightarrow\left(-8\right)^9< \left(-32\right)^5\)
\(b,2^{21}\) và \(3^{14}\)
\(2^{21}=\left(2^3\right)^7\)
\(3^{14}=\left(3^2\right)^7\)
\(2^3< 3^2\)\(\Rightarrow2^{21}< 3^{14}\)
\(c,12^8\) và \(8^{12}\)
\(12^8=\left(12^2\right)^4=144^4\)
\(8^{12}=\left(8^3\right)^4=512^4\)
\(144^4< 512^4\)\(\Rightarrow12^8< 8^{12}\)
\(d,\left(-5\right)^{39}\) và \(\left(-2\right)^{91}\)
\(\left(-5\right)^{39}=\left[\left(-5\right)^3\right]^{13}\)
\(\left(-2\right)^{91}=\left[\left(-2\right)^7\right]^{13}\)
\(\left(-5\right)^3>\left(-2\right)^7\)\(\Rightarrow\left(-5\right)^{39}>\left(-2\right)^{91}\)
Bài 2:
\(a,2.\left|x-1\right|-3x=7\)
\(\left|x-1\right|=\dfrac{7+3x}{2}\)
Ta có 2 trường hợp:
Th1:\(x-1=\dfrac{7-3x}{2}\)
\(\dfrac{2x-2}{2}=\dfrac{7+3x}{2}\)
\(\Rightarrow2x-2=7+3x\)
\(2x-3x=7+2\)
\(-x=9\Rightarrow x=-9\)
Th2:\(x+1=-\dfrac{7+3x}{2}\)
\(\dfrac{2x-2}{2}=\dfrac{-7-3x}{2}\)
\(\Rightarrow2x-2=-7-3x\)
\(2x+3x=-7+2\)
\(5x=-5\Rightarrow x=-1\)
Vậy \(x\in\left\{-9;-1\right\}\)
\(b,\left|5x-3\right|=\left|7-x\right|\)
Ta có: Th1: \(\left|7-x\right|=7-x\) khi \(7-x\ge0\)\(\Rightarrow x\le7\)
\(5x-3=7-x\)
\(5x+x=7+3\)
\(6x=10\Rightarrow x=\dfrac{10}{6}=\dfrac{5}{3}\)( thoả mãn )
vì x thoả mãn \(x\le7\)\(\Rightarrow\) th1 thoả mãn x
Ta có: Th2: \(\left|7-x\right|=-\left(7-x\right)\) khi \(7-x< 0\Rightarrow x>7\)
\(5x-3=-\left(7-x\right)\)
\(5x-3=-7+x\)
\(5x-x=-7+3\)
\(4x=-4\Rightarrow x=-1\) ( loại )
Vì x thoả mãn \(x>7\) mà \(x=-1\Rightarrow\)th2 loại
a) \(A=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=.............................................................\)
\(=\left(2^{16}-1\right)\left(2^{16}+1\right)=2^{32}-1=B-1\)
Suy ra A < B
b) \(A=2015.2017=\left(2016-1\right)\left(2016+1\right)=2016^2-1=B-1\)
Suy ra A < B
Phần a bạn nhân thêm ở A là (2-1) là ra hằng đẳng thức, cứ thế mà triển. (Kết quả: A<B)
Phần b: phân tích A, ta có:
2015.2017= (2016-1).(2016+1)= 2016^2 -1 <2016^2
Suy ra: A<B
y=\(3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
=>y=\(\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
=>y=\(\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\)
=>y=\(\left(2^8-1\right)\left(2^8+1\right)\)
=>y=\(2^{16}-1\)<\(2^{16}\)=x
=>x>y.
Vậy x>y
\(B=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(=\frac{1}{2}\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(=\frac{1}{2}\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(.........\)
\(=\frac{1}{2}\left(3^{32}-1\right)\)\(< \)\(3^{32}-1\)\(=\)\(A\)
Vậy \(B< A\)
\(a.\)
Ta sẽ biến đổi biểu thức \(B\) quy về dạng có thể dùng được hằng đẳng thức \(\left(x-y\right)\left(x+y\right)=x^2-y^2\), khi đó:
\(B=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)=2^{16}-1\)
Vì \(2^{16}>2^{26}-1\) nên \(2^{16}>\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
Vậy, \(A>B\)
Tương tự với câu \(b\) kết hợp với phương pháp tách hạng tử, khi đó xuất hiện hằng đẳng thức mới và dễ dàng đơn giản hóa biểu thức \(A\). Ta có:
\(A=4\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)=\frac{1}{2}\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(=\frac{1}{2}\left(3^4-1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(=\frac{1}{2}\left(3^{64}-1\right)\left(3^{64}+1\right)=\frac{1}{2}\left(3^{128}-1\right)\)
Mặt khác, do \(\frac{1}{2}<1\) nên \(\frac{1}{2}\left(3^{128}-1\right)<3^{128}-1\)
Vậy, \(B>A\)
Có: \(\left(-5\right)^{39}=\left[\left(-5\right)^3\right]^{13}=\left(-125\right)^{13}\)
\(\left(-2\right)^{91}=\left[\left(-2\right)^7\right]^{13}=\left(-128\right)^{13}\)
Vì \(\left(-125\right)^{13}>\left(-128\right)^{13}\Rightarrow\left(-5\right)^{39}>\left(-2\right)^{91}\)