K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2017

Có: \(\left(-5\right)^{39}=\left[\left(-5\right)^3\right]^{13}=\left(-125\right)^{13}\)

\(\left(-2\right)^{91}=\left[\left(-2\right)^7\right]^{13}=\left(-128\right)^{13}\)

\(\left(-125\right)^{13}>\left(-128\right)^{13}\Rightarrow\left(-5\right)^{39}>\left(-2\right)^{91}\)

15 tháng 9 2019

\(B=24\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

\(=\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

\(=\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

\(=\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

\(=\left(5^{16}-1\right)\left(5^{16}+1\right)\)

\(=5^{32}-1< 5^{32}\)

Vậy \(B< A\)

26 tháng 9 2017

Bài1:

\(a,\left(-8\right)^9\)\(\left(-32\right)^5\)

Ta có:

\(\left(-8\right)^9=-2^{27}\)

\(\left(-32\right)^5=\left(-8.4\right)^5=-2^{27}.2^{10}\)

\(-2^{27}.10< -2^{27}\) nên \(\left(-8\right)^9>\left(-32\right)^5\)

Các câu sau tương tự

Bài2:

\(a,2\left|x-1\right|-3x=7\)

+)Xét \(x\ge1\Rightarrow\left|x-1\right|=x-1\)

Do đó:

\(2\left(x-1\right)-3x=7\\ \Leftrightarrow2x-2-3x=7\\ \Leftrightarrow-x=9\\ \Leftrightarrow x=-9\left(loại\right)\)

+)Xét \(x< 1\Rightarrow\left|x-1\right|=1-x\)

Do đó:

\(2\left(1-x\right)-3x=7\\ \Leftrightarrow2-2x-3x=7\\ \Leftrightarrow-5x=5\\ x=-1\left(chon\right)\)

Vậy x=-1

Câu b tương tự

26 tháng 9 2017

Bài 1:

\(a,\left(-8\right)^9\)\(\left(-32\right)^5\)

\(\left(-8\right)^9=\left[\left(-2\right)^3\right]^9=\left(-2\right)^{27}\)

\(\left(-32\right)^5=\left[\left(-2\right)^5\right]^5=\left(-2\right)^{25}\)

\(\left(-2\right)^{27}< \left(-2\right)^{25}\)

\(\Rightarrow\left(-8\right)^9< \left(-32\right)^5\)

\(b,2^{21}\)\(3^{14}\)

\(2^{21}=\left(2^3\right)^7\)

\(3^{14}=\left(3^2\right)^7\)

\(2^3< 3^2\)\(\Rightarrow2^{21}< 3^{14}\)

\(c,12^8\)\(8^{12}\)

\(12^8=\left(12^2\right)^4=144^4\)

\(8^{12}=\left(8^3\right)^4=512^4\)

\(144^4< 512^4\)\(\Rightarrow12^8< 8^{12}\)

\(d,\left(-5\right)^{39}\)\(\left(-2\right)^{91}\)

\(\left(-5\right)^{39}=\left[\left(-5\right)^3\right]^{13}\)

\(\left(-2\right)^{91}=\left[\left(-2\right)^7\right]^{13}\)

\(\left(-5\right)^3>\left(-2\right)^7\)\(\Rightarrow\left(-5\right)^{39}>\left(-2\right)^{91}\)

Bài 2:

\(a,2.\left|x-1\right|-3x=7\)

\(\left|x-1\right|=\dfrac{7+3x}{2}\)

Ta có 2 trường hợp:

Th1:\(x-1=\dfrac{7-3x}{2}\)

\(\dfrac{2x-2}{2}=\dfrac{7+3x}{2}\)

\(\Rightarrow2x-2=7+3x\)

\(2x-3x=7+2\)

\(-x=9\Rightarrow x=-9\)

Th2:\(x+1=-\dfrac{7+3x}{2}\)

\(\dfrac{2x-2}{2}=\dfrac{-7-3x}{2}\)

\(\Rightarrow2x-2=-7-3x\)

\(2x+3x=-7+2\)

\(5x=-5\Rightarrow x=-1\)

Vậy \(x\in\left\{-9;-1\right\}\)

\(b,\left|5x-3\right|=\left|7-x\right|\)

Ta có: Th1: \(\left|7-x\right|=7-x\) khi \(7-x\ge0\)\(\Rightarrow x\le7\)

\(5x-3=7-x\)

\(5x+x=7+3\)

\(6x=10\Rightarrow x=\dfrac{10}{6}=\dfrac{5}{3}\)( thoả mãn )

vì x thoả mãn \(x\le7\)\(\Rightarrow\) th1 thoả mãn x

Ta có: Th2: \(\left|7-x\right|=-\left(7-x\right)\) khi \(7-x< 0\Rightarrow x>7\)

\(5x-3=-\left(7-x\right)\)

\(5x-3=-7+x\)

\(5x-x=-7+3\)

\(4x=-4\Rightarrow x=-1\) ( loại )

Vì x thoả mãn \(x>7\)\(x=-1\Rightarrow\)th2 loại

23 tháng 7 2016

a) \(A=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=.............................................................\)

\(=\left(2^{16}-1\right)\left(2^{16}+1\right)=2^{32}-1=B-1\)

Suy ra A < B

b) \(A=2015.2017=\left(2016-1\right)\left(2016+1\right)=2016^2-1=B-1\)

Suy ra A < B

23 tháng 7 2016

Phần a bạn nhân thêm ở A là (2-1) là ra hằng đẳng thức, cứ thế mà triển. (Kết quả: A<B)

Phần b: phân tích A, ta có:

2015.2017= (2016-1).(2016+1)= 2016^2 -1 <2016^2

Suy ra: A<B

25 tháng 7 2017

y=\(3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

=>y=\(\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

=>y=\(\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\)

=>y=\(\left(2^8-1\right)\left(2^8+1\right)\)

=>y=\(2^{16}-1\)<\(2^{16}\)=x

=>x>y.

Vậy x>y

7 tháng 7 2018

\(B=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\frac{1}{2}\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\frac{1}{2}\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

                \(.........\)

\(=\frac{1}{2}\left(3^{32}-1\right)\)\(< \)\(3^{32}-1\)\(=\)\(A\)

Vậy  \(B< A\)

7 tháng 7 2018

 A=1.853020189*10 \(^{15}\)

B= 9.265100944*10\(^{15}\)

tự so sánh

6 tháng 4 2018

a. Ta có: x < 5 ⇔ (a – b)x < 5(a – b)

⇒ a – b > 0 ⇔ a > b

b. Ta có: x > 2 ⇔ (a – b)x < 2(a – b)

⇒ a – b < 0 ⇔ a < b

18 tháng 4 2016

\(a.\)

Ta sẽ biến đổi biểu thức  \(B\)  quy về dạng có thể dùng được hằng đẳng thức  \(\left(x-y\right)\left(x+y\right)=x^2-y^2\), khi đó:

\(B=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

                                                                                     \(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

                                                                                     \(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\)

                                                                                     \(=\left(2^8-1\right)\left(2^8+1\right)=2^{16}-1\)

Vì  \(2^{16}>2^{26}-1\)  nên  \(2^{16}>\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

Vậy,  \(A>B\)

Tương tự với câu  \(b\)  kết hợp với phương pháp tách hạng tử, khi đó xuất hiện hằng đẳng thức mới và dễ dàng đơn giản hóa biểu thức \(A\). Ta có:

\(A=4\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)=\frac{1}{2}\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

                                                                                \(=\frac{1}{2}\left(3^4-1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

                                                                                \(=\frac{1}{2}\left(3^{64}-1\right)\left(3^{64}+1\right)=\frac{1}{2}\left(3^{128}-1\right)\)

Mặt khác, do  \(\frac{1}{2}<1\)  nên   \(\frac{1}{2}\left(3^{128}-1\right)<3^{128}-1\)

Vậy,  \(B>A\)