Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{2+4+6+...+2m}{m}=\frac{\left(2+2m\right).m}{2m}=\frac{2\left(1+m\right).m}{2m}=m+1\)
\(B=\frac{2+4+6+....+2n}{n}=\frac{\left(2+2n\right).n}{2n}=\frac{2\left(1+n\right).n}{2n}=n+1\)
Mà A>B=>m+1>n+1=>m>n
Vậy m>n
Sửa N=\(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}.....\frac{100}{101}\)
Ta có : \(\frac{1}{2}< \frac{2}{3}\); \(\frac{3}{4}< \frac{4}{5}\); \(\frac{5}{6}< \frac{6}{7}\); ... ; \(\frac{99}{100}< \frac{100}{101}\)
\(\Rightarrow\)\(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\)hay M < N
b) M .N = \(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}.\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}=\frac{1.2.3.4.5.6...99.100}{2.3.4.5.6.7...100.101}=\frac{1}{101}\)
c) vì M < N nên M. M < M . N = \(\frac{1}{101}\)\(< \frac{1}{100}\)
\(\Rightarrow M< \frac{1}{10}\)
B,
(1 - x-1/2011)+(1 - x-2/2012)+(1 - x-3/2013)=(1 - x-4/2014)+(1 - x-5/2015)+(1 - x-6/2016)
=> 2010-x/2011 + 2010-x/2012 + 2010-x/2013 = 2010-x/2014 + 2010-x/2015 + 2010-x/2016
=> 2010-x/2011 + 2010-x/2012 + 2010-x/2013 - 2010-x/2014 - 2010-x/2015 - 2010-x/2016=0
=>(2010-x).(1/2011 + 1/2012 + 1/2013 + 1/2014 - 1/2015 - 1/2016)=0
Mà: 1/2011 + 1/2012 + 1/2013 + 1/2014 - 1/2015 - 1/2016 khác 0
=> 2010-x=0
=>x=2010
a, 10/a^m > 11/a^m; 10/a^n > 9/a^n => A > B
b, bạn cộng 1 vào các phân số đưa VP qua VT đặt nhân tử chung x + 2010 thì trong ngoặc còn lại là số dương nên x + 2010 = 0
Xét hiệu \(A-B=\frac{2013-2012}{a^n}+\frac{2011-2012}{a^m}=\frac{1}{a^n}-\frac{1}{a^m}\)
TH1: n > m > 0
=> an > am \(\Rightarrow\frac{1}{a^n}<\frac{1}{a^m}\Rightarrow\frac{1}{a^n}-\frac{1}{a^m}<0\)=> A < B
TH2: m > n > 0
=> an < am \(\Rightarrow\frac{1}{a^n}>\frac{1}{a^m}\Rightarrow\frac{1}{a^n}-\frac{1}{a^m}>0\Rightarrow A>B\)