K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2017

Ta có: 333444=333111.4=3334mũ 111=12296370321111

              444333=444111.3=4443mũ 111=87528384111

Mà: 12296370321>87528384 và 111=111.

=>333444>444333.

Tk phát nhé

22 tháng 9 2016

\(333^{444}=\left(333\times4\right)^{111}=1332^{111}\)

\(444^{333}=\left(444\times3\right)^{111}=1332^{111}\)

\(1332^{111}=1332^{111}\Rightarrow333^{444}=444^{333}\)

22 tháng 9 2016

\(333^{444}=\left(333^4\right)^{111}\)

\(444^{333}=\left(444^3\right)^{111}\)

\(\Rightarrow333^4=111^4.3^4=111^3.111.3^4\)

     \(444^3=111^3.4^3\)

\(\Rightarrow111.3^4=111.81>4^3=64\)

\(\Rightarrow333^{444}>444^{333}\)

3 tháng 9 2017

5\(^{300}\)=25\(^{150}\)

3\(^{453}\)=27\(^{151}\)=27.27\(^{150}\)

vì 25\(^{150}\)<27.27\(^{150}\)

\(\Rightarrow\)5\(^{300}\)<3\(^{453}\)

31\(^{11}\)<32\(^{11}\)=(2\(^5\))\(^{11}\)=2\(^{55}\)

31\(^{11}\)<2\(^{55}\)

17\(^{14}\)>16\(^{14}\)=2\(^{56}\)

31\(^{11}\)<2\(^{55}\)<2\(^{56}\)<17\(^{14}\)

\(\Rightarrow\)31\(^{11}\)<17\(^{14}\)

3 tháng 9 2017

333\(^{444}\)=3\(^{444}\).111\(^{444}\)

444\(^{333}\)=4\(^{333}\).111\(^{333}\)

ta có 3\(^{444}\)=81\(^{111}\)

4\(^{333}\)=64\(^{111}\)

\(\Rightarrow\)3\(^{444}\)>4\(^{333}\)(81\(^{111}\)>64\(^{111}\))

111\(^{444}\)>111\(^{333}\)

3\(^{444}\).111\(^{444}\)>4\(^{333}\).111\(^{333}\)

Vậy 333\(^{444}\)>444\(^{333}\)

nảy mình làm thiếu 1 câu bây giờ bù nhá

27 tháng 9 2017

a)\(333^{444}=3^{444}.111^{444}=\left(3^4\right)^{111}.111^{444}=81^{111}.111^{444}\)

\(444^{333}=4^{333}.111^{333}=\left(4^3\right)^{111}.111^{333}=64^{111}.111^{333}\)

Từ \(\hept{\begin{cases}81^{111}>64^{111}\\111^{444}>111^{333}\end{cases}}\Rightarrow81^{111}.111^{444}>64^{111}.111^{333}\Rightarrow333^{444}>444^{333}\)

b)\(5^{300}=\left(5^2\right)^{150}=25^{150};4^{453}=\left(4^3\right)^{151}=64^{151}\)

Vì 25150<64151 => 5300<4453

c)\(5^{217}>5^{216}=\left(5^3\right)^{72}=125^{72}>119^{72}\) => \(5^{217}>119^{72}\)

19 tháng 10 2017

CẢM ƠN NHIỀU LẮM!

23 tháng 8 2020

a, 2^100

b, 333^444

c,2^161

d, 3^453

23 tháng 8 2020

a) Ta có : \(10^{30}=\left(10^3\right)^{10}=1000^{10}\)

                  \(2^{100}=\left(2^{10}\right)^{10}=1024^{10}\)

mà \(1000< 1024\)

\(\Rightarrow1000^{10}< 1024^{10}\)

\(\Rightarrow10^{30}< 2^{100}\)

b) Ta có : \(333^{444}=\left(111.3\right)^{444}=111^{444}.3^{444}=111^{444}.\left(3^4\right)^{111}=111^{444}.81^{111}\)

                 \(444^{333}=\left(111.4\right)^{333}=111^{333}.4^{333}=111^{333}.\left(4^3\right)^{111}=111^{333}.64^{111}\)

mà \(444>333\Rightarrow111^{444}>111^{333}\)

và \(81>64\Rightarrow81^{111}>64^{111}\)

\(\Rightarrow111^{444}.81^{111}>111^{333}.64^{111}\)

\(\Rightarrow333^{444}>444^{333}\)

c) Ta có : \(2^{161}>2^{160}=\left(2^4\right)^{40}=16^{40}>13^{40}\)

\(\Rightarrow2^{161}>13^{40}\)

d) Ta có : \(3^{453}>3^{450}=\left(3^3\right)^{150}=27^{150}>25^{150}=\left(5^2\right)^{150}=5^{300}\)

\(\Rightarrow3^{453}>5^{300}\)