Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có : \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{199.200}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{199}-\frac{1}{200}\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{199}+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)
=> \(\frac{\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{199.200}}{\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}}=1\)
=> đpcm
Study well ! >_<
1.a)A = (1 - 1/3)(1-2/5)...(1-5/5)....(1-9/5)
=(1-1/3)....0.....(1-9/5)
=0
=>đpcm.
b)ta xét:
1/22 = 1/2x2 < 1/1x2
.............
1/82 = 1/8x8 <1/7x8
=>B < 1/1x2 + 1/2x3 ... + 1 + 1/7x8
<=> B <1 - 1/2 + 1/2 - 1/3 + ... + 1/7 - 1/8
<=> B < 1 - 1/8 = 7/8 < 1
=> B < 1 => đpcm
2.a) Đặt m = 2007(2006+2007) = 2006(2006 + 2007) + (2006+2007)
Đặt n = 2006(2007+2008) = 2006(2006+2007) + (2006 + 2006)
Ta thấy : (2006+2007) > (2006 + 2006) => m > n , áp dụng công thức "a.d > c.d <=> a/b > b/d (a,c thuộc Z// b,d thuộc N)
=> A > B
b)ta có: D = 196 + 197/197 + 198 = (196/197+198) + (197/197+198) < 196/197 + 197/198 = C
=> C > D
c)gọi 2010 là a
ta thấy : (a + 1)(a-3) = (a - 1)(a - 3) + 2(a - 3) < (a - 1)(a - 3) + 2(a - 1) = (a - 1)(a - 1)
áp dụng: ad > bc <=> a/b > c/d ( a,b,c,d thuộc Z// b,d > 0)
=> E > F
Nên đợi ai đó giải hết 2 3 bài xong rồi mới đăng tiếp những bài còn lại, chứ dài vậy giải hơi nản =)))
Bài 1:
1, \(13\frac{2}{5}-\left(\frac{18}{32}-2\frac{6}{10}\right)\)
\(=\frac{67}{5}-\left(\frac{9}{16}-\frac{13}{5}\right)\)(Chuyển hỗn số thành p/số và rút gọn hai số trong ngoặc luôn)
\(=\frac{67}{5}-\left(\frac{-163}{80}\right)\)
\(=\frac{246}{16}\)
2, \(22.4\frac{5}{7}-\left(8.91+1,09\right)\)(Phần 2 viết vầy có đúng không vậy ? Nếu sai thì kêu chị sửa nhé)
\(=22.\frac{33}{7}-10\)
\(=\frac{726}{7}-10\)
\(=\frac{656}{7}\)
3, Chỗ ''3 phần 10 phần 2'' là sao :v ?
4, \(5\frac{2}{7}.\frac{8}{11}+5\frac{2}{7}.\frac{5}{11}-5\frac{2}{7}.\frac{2}{11}\)
\(=\frac{37}{7}.\frac{8}{11}+\frac{37}{7}.\frac{5}{11}-\frac{37}{7}.\frac{2}{11}\)(Chuyển hỗn số thành p/số)
\(=\frac{37}{7}.\left(\frac{8}{11}+\frac{5}{11}-\frac{2}{11}\right)\)(Dùng tính chất phân phối)
\(=\frac{37}{7}.\frac{11}{11}\)
\(=\frac{37}{7}.1=\frac{37}{7}\)
Bài 1a
B=4/1.3 + 4/3.5 + 4/5.7+...+4/2017.2019
B=4.2/(1.3).2 + 4.2/(3.5).2 + 4.2/(5.7).2+....+4.2/(2017.2019).2
B=2.( 2/1.3 + 2/3.5 + 2/5.7 +...+ 2/2017.2019 )
B=2.(1-1/3+1/3-1/5+1/5-1/7+....+1/2017-1/2019)
B=2.(1-1/2019)
B=2.(2019/2019-1/2019)
B=2.2018/2019
B=4036/2019
Đặt A=1/10+1/40+1/88+1/154+1/238+1/340
A=1/2.5+1/5.8+1/8.11+1/11.14+1/14.17+1/17.20
3A=3/2.5+3/5.8+....+3/17.20
3A=1/2-1/5+1/5-1/8+...+1/17-1/20
3A=1/2-1/20
3A=9/20
2)
Giữ nguyên p/s 1/2^2
Ta có:1/3^2<1/2.3
1/4^2<1/3.4
...............
1/n^2<1/(n-1).n
=>1/3^2+1/4^2+...+1/n^2<1/2.3+1/3.4+...+1/(n-1).n
=>1/3^2+1/4^2+.....+1/n^2<1/2-1/3+1/3-1/4+.........+1/n-1-1/n
=>1/2^2+1/3^2+.....+1/n^2<1/2^2+1/2-1/n
=>1/2^2+1/3^2+....+1/n^2<3/4-1/n<3/4
3)
2B=2/3.5+2/5.7+....+2/47.49+2/49.51
2B=1/3-1/5+1/5-1/7+.....+1/47-1/49+1/49-1/51
2B=1/3-1/51
2B=16/51
B=16/51:2
B=8/51
A=1+1/2+1/2^2+...+1/2^2010
2A=2+1+1/2+....+1/2^2009
2A-A=(2+1+1/2+...+1/2^2009)-(1+1/2+1/2^2+....+1/2^2010)
A=2-1/2^2010
a) \(A=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)
\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)
\(A=3\left(2+2^3+...+2^{2009}\right)⋮3\)
\(A=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)
\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)
\(A=7\left(2^1+2^4+...+2^{2008}\right)⋮7\)
Các ý dưới bạn làm tương tự nhé.
*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)
\(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)
\(=6\times\left(2^2+2^3+...+2^{2008}\right)\)
\(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)
\(\Rightarrow A⋮3\)
*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)
\(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(\Rightarrow A⋮7\)
Mình sửa lại đề C 1 chút xíu
*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)
\(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)
\(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(\Rightarrow C⋮4\)
Các câu khác làm tương tự nhé. Chúc bạn học tốt!