Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình gõ câu a bị lỗi nha , thực chất câu a là
a) Tìm các số tự nhiên x, y biết : 2xy + x + 2y = 13
a)Bạn làm nha vì bài này dễ rồi
b)+)Ta có:A=1.2+2.3+3.4+..................+99.100
=>3A=1.2.3+2.3.3+3.4.3+.................+99.100.3
=>3A=1.2.3+2.3.(4-1)+3.4.(5-2)+................+99.100.(101-98)
=>3A=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-...................-98.99.100+99.100.101
=>3A=99.100.101
=>A=\(\frac{99.100.101}{3}=333300\)
+)Ta lại có:B=12+22+32+..................+992
=>B=1.1+2.2+3.3+............+99.99
=>B=1.(2-1)+2.(3-1)+3.(4-1)+..........+99.(100-1)
=>B=1.2-1+2.3-2+3.4-3+........................+99.100-99
=>B=(1.2+2.3+3.4+............+99.100)-(1+2+3+..............+99)
Đặt N=1.2+2.3+3.4+....................+99.100
=>3N=1.2.3+2.3.3+3.4.3+.................+99.100.3
=>3N=1.2.3+2.3.(4-1)+3.4.(5-2)+................+99.100.(101-98)
=>3N=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-...................-98.99.100+99.100.101
=>3N=99.100.101
=>N=\(\frac{99.100.101}{3}=333300\)
Đặt M=1+2+3+..............+99(có 99 số hạng)
=>M=\(\frac{\left(1+99\right).99}{2}=4950\)
+)Ta thấy A-B=333300-(333300-4950)
=>A-B=333300-333300+4950
=>A-B=4950\(⋮\)50
Vậy A-B\(⋮\)50
Chúc bn học tốt
1/a,
-Ta có:
$B<1\Leftrightarrow B<\frac{10^{2005}+1+9}{10^{2006}+1+9}=\frac{10^{2005}+10}{10^{2006}+10}=\frac{10(10^{2004}+1)}{10(10^{2005}+1)}=\frac{10^{2004}+1}{10^{2005}+1}=A$
-Vậy: B<A
b,$A=1+(\frac{1}{2})^2+...+(\frac{1}{100})^2$
$\Leftrightarrow A=1+\frac{1}{2^2}+...+\frac{1}{100^2}$
$\Leftrightarrow A<1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}$
$\Leftrightarrow A<1+\frac{1}{1}-\frac{1}{2}+...+\frac{1}{99}-\frac{1}{100}$
$\Leftrightarrow A<1+1-\frac{1}{100}\Leftrightarrow A<2-\frac{1}{100}\Leftrightarrow A<2(đpcm)$
2,
a.
-Ta có:$\Rightarrow \frac{3x+7}{x-1}=\frac{3(x-1)+16}{x-1}=\frac{3(x-1)}{x-1}+\frac{16}{x-1}=3+\frac{16}{x-1}
-Để: 3x+7/x-1 nguyên
-Thì: $\frac{16}{x-1}$ nguyên
$\Rightarrow 16\vdots x-1\Leftrightarrow x-1\in Ư(16)\Leftrightarrow ....$
b, -Ta có:
$\frac{n-2}{n+5}=\frac{n+5-7}{n+5}=1-\frac{7}{n+5}$
-Để: n-2/n+5 nguyên
-Thì: \frac{7}{n+5} nguyên
$\Leftrightarrow 7\vdots n+5\Leftrightarrow n+5\in Ư(7)\Leftrightarrow ...$
a)xét 2A =2+2^2+2^3+.....+2^2019
-A=1+2+2^2+...+2^2018
A=(2^2019)-1 <2^2019
b)theo câu a ta có A+1=2^2019-1+1=2^2019=2^(x+1)
2019=x+1 =>x=2018
Ko ghi đề
\(2A=2+2^2+...+2^{101}\\ 2A-A=2^{101}-1\\ =>A=2^{101}-1\)
Mấy cái khác cg lm như v (b thì 3b)
Nhớ đúng mk nhá
Chỗ 4 mũ 2/3.5 x ... x 59 mũ 2/58.60 nha
a, Ta có : \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{199.200}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{199}-\frac{1}{200}\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{199}+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)
=> \(\frac{\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{199.200}}{\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}}=1\)
=> đpcm
Study well ! >_<